Hurricane Laura, 26 August 2020

User-driven evaluation of tropical cyclone predictions

Barbara Brown¹, Louisa Nance¹, and Christopher Williams²

¹National Center for Atmospheric Research, Boulder CO USA ²University of Florida Department of Geography

WMO High Impact Weather Workshop International Verification Methods Workshop Online

11 November 2020

Hurricane Laura, 26 August 2020

Hurricane Laura (26 Aug 2020)

- Made landfall at Cameron, Louisiana, at near peak intensity
- Tenth-strongest U.S. hurricane landfall on record
- Led to deaths of at least 42 people in the U.S.
- \$14 billion in damage in southwestern Louisiana and southeastern Texas

Predictions of Tropical Cyclone (TC) track and **intensity** are important for planning evacuations, protecting life and property

Goal of this presentation is to consider meaningful – user-driven – ways of evaluating NWP guidance, to aid forecasters in making their predictions of TC intensity

Value chain connection (Lazo)

Value chain connection (Lazo)

inform and facilitate the use of NWP guidance by forecasters?"

User-relevant verification

(Morss et al. BAMS 2008; Ebert et al. Met. Z., 2018)

- <u>Level 0</u>: Focus on single, simple measures (one-size fits all) ("administrative" verification)
- <u>Level 1</u>: Broad diagnostic approaches (stratification, thresholds, etc.)
- <u>Level 2</u>: Features-based approaches, or more enhanced diagnostic approaches (measure many attributes of forecasts, often from a spatial or temporal perspective)
- <u>Level 3</u>: User-relevant verification approaches and measures (<u>User-driven</u>)
- <u>Level 4</u>: Forecast value estimated via conversion of forecasts to decisions (can follow through whole value chain)

User-driven/relevant verification approaches...

...consider information needs of <u>specific users</u> rather than applying a 1-size fits all approach to all forecasts of a specific type (e.g., RMSE or ACC for NWP)

... require understanding users' questions about the quality of the forecasts

The Hurricane Forecast Improvement Project (HFIP)

- NOAA-funded project initiated in 2007 to significantly improve TC position and intensity predictions
 - Initial goals (first 10 years): Significant improvements in predicted track and intensity
- NCAR project goal

Provide guidance to National Hurricane Center (NHC) to help select <u>experimental models to demonstrate to</u> **operational forecasters** during each TC season

> Predictions from demonstrated models must be expected to "do no harm"

Approach

- With NHC staff, identify questions about model performance that <u>are</u> <u>relevant for their use operationally</u>
- Develop verification approaches to answer those questions
 - Compare <u>experimental</u> model performance to "<u>baseline</u>" model performance
 - **Data**: 3 years of retrospective forecasts produced by candidate and baseline forecasting systems
- Models evaluated in spring before start of hurricane season

Example questions:

- Does the experimental forecasting system perform as well or better **on average** than the baseline models?
- Does the experimental system have more/less outlier events?
- How does the candidate model "rank" with the baseline models?
 The next slides show an example application for a single candidate model's predictions of hurricane intensity

Does the candidate model (E1) have <u>smaller errors (on average)</u> than the baseline models (B1 and B2)?

"Traditional" TC intensity verification <u>Conclusion</u>: E1 better than B1 and B2 for all lead times

Does the candidate model (E1) have <u>smaller errors (on average)</u> than the baseline models?

Pairwise differences indicate

- Significant differences for <u>most</u> lead times relative to Baseline 1
- Significant differences for <u>some</u> lead times (36 72 h) relative to Baseline 2

Does the candidate model (E1) have fewer <u>large errors</u> than the baseline models?

E1 has many *fewer extreme errors* than B1, but about the same number as B2

How often were the E1 errors smaller (by >=5 kt) than the B1 and B2 errors?

E1 was frequently better than B1 for leads of 60 h and longer

• E1 was better than B2 or *tied with B2* for most lead times

How did the E1 forecast <u>rank</u> in comparison to the errors associated with three baseline models?

 E1 was most frequently <u>second best</u> for lead times between 36 and 60 h

- E1 was significantly <u>best</u> for 120-h forecasts
- E1 was *worst* for about 15-18% of the cases

Some conclusions...

- Evaluating uncertainty in verification measures can lead to different (more defensible) decisions
- <u>User-driven questions</u> enable strategies to make <u>rational and</u> <u>meaningful choices</u> among forecasting systems for specific applications (as demonstrated by this study)
- Simple/standard questions (e.g., about average behavior) may not meet user needs
 - <u>User-driven</u> approaches (e.g., *model ranking, score cards, outlier examination*) can provide information that is more meaningful and useful
- The approach applied here working closely with decision makers – can be a model for other <u>user-driven verification</u> <u>applications of verification as a component of the value chain</u>

Acknowledgements and thanks

- Contributions of many NCAR scientists who worked diligently on development and application of the evaluations for several years
- NHC forecasters and managers who took great interest in identifying the information forecasters care about
- Support from NOAA's HFIP project office, which made these developments possible
- Contributions from the many modeling groups who continuously implemented improvements to their models and provided large sets of forecasts to us for evaluation