

Object-Based Verification Techniques for Short-Term Thunderstorm Forecasts

¹ - Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma ² - NOAA/OAR/National Severe Storms Laboratory ³ - School of Meteorology, University of Oklahoma

Patrick Skinner^{1,2,3}, Monte Flora^{1,2,3}, Corey Potvin^{2,3}, Tony Reinhart², Kelsey Britt^{1,2,3}, and Jordan Laser³

What are we trying to forecast?

Tornado Watch

Tornadoes are *possible* in this area

A forecast gap of several hours exists between thunderstorm watch products and warnings

Suite of 18+ hour forecast guidance

We would like to provide probabilistic guidance of thunderstorm hazards on time scale between NWS watches and warnings (0-6 h) and spatial scales similar to individual convective storms (~10-50 km)

Tornado Warnings

Tornadoes are *occurring* in these areas

Short-term thunderstorm forecasting using the Warn-on-Forecast System (WoFS):

spacing

0.3

0.5

A convection allowing ensemble analysis and prediction system designed to provide probabilistic forecasts of thunderstorm hazards between the watch and warning scale:

Suite of 18+ hour forecast guidance

Warn-on-Forecast: 6-hr guidance

Forecast output available every 5 minutes on a 900 x 900 km domain with 3 km grid

Tornado Warnings

Tornadoes are *occurring* in these areas

Forecast Dataset - Use updraft helicity swaths as surrogate for mesocyclones:

- Updraft helicity (UH; Kain et al. 2008) is commonly used as a surrogate for severe weather (e.g. Sobash et al. 2011)
- Accumulated swaths of UH can be constructed over various time periods to serve as predicted events
- Results in a sparse field of discrete events within the forecast domain

Verification Dataset - Use radar derived rotation tracks from Multi-Radar Multi-Sensor analyses:

- Mesocyclones are not fully observed without specialized observing platforms
- An imperfect proxy for mesocyclone occurrence needs to be developed as a verification dataset:
 - Local Storm Reports (LSRs) are often used as a surrogate for severe weather in nextday (24 hr) CAM verification (e.g. Sobash et al. 2011)
 - LSR databases suffer from small-scale space and time errors and nonmeteorological biases (e.g. Trapp et al. 2005; Verbout et al. 2006; Potvin et al. 2019)
- Gridded radar azimuthal wind shear observations may be used to create rotation tracks over a similar time and space scale as UH swaths

Properties of forecast and verification datasets a good fit for object-based verification

Properties of forecast and verification datasets a good fit for object-based verification

- 30-min swath objects of rotation tracks can be visualized using paintball plots
- Leverages high temporal resolution of WoFS output
- Paintball plots are among the most popular forecast products based on usage by Hazardous Weather Testbed Spring Forecasting Experiment participants (Wilson et al. 2020)

Object ID and Matching:

- Emulates MODE:
 - Apply size and continuity thresholds to rotation track objects
 - Merge nearby objects (< 12 km boundary distance)
 - Multiple forecast objects cannot be matched to the same verification object
 - Total interest score used to determine matches:

 Matching thresholds chosen to be roughly the space and time scales for a NWS warning product (cd_{max}, md_{max} = 32 km; t_{max} = 20 min) d)

a)

Skinner et al. (2018; Weather and Forecasting)

Deterministic WoFS rotation track verification:

WoFS rotation track object matching

Extension to probabilistic forecasts:

- Object-based technique only provides information on quality of deterministic forecasts
- Ensemble spread in WoFS forecasts varies for different storms in domain and is a function of storm maturity
- Complicates use of neighborhood verification measures

3-hr Forecast Probabilities of 2-5 km UH > 60 m² s⁻² **No Neighborhood**

		⊥.	0	
		0.	9	
		0.	8	m Neigh.)
		0.	7	n ² s ⁻² (9k
		0.	6	el. > 60 n
		0.	5	Updraft H
		0.	4	f 2-5 km
		0.	3	is. Prob. c
		0.	2	Ш
		0.	1	
5(0	d	BZ	Ζ
3.	5	d	BZ	Ζ

DZ Paint

Application of a "next day neighborhood" (40 km radius)

- Application of Neighborhood Maximum Ensemble Probability with a radius designed for next-day CAM verification (similar to scale of SPC outlooks - 40 km radius)
- Increases probability values where ensemble agreement is smaller
- Spreads higher probabilities over a much wider region

3-hr Forecast Probabilities of 2-5 km UH > 60 m² s⁻² 40 km Radius Neighborhood

			-	
	-	0.	9	gh.)
		0.	8	7km Neig
		0.	7	n ² s ⁻² (2
		0.	6	el. > 60 r
	_	0.	5	Updraft He
		0.	4	of 2-5 km
		0.	3	. Prob. c
	_	0.	2	Ens
		0.	1	
5(0	d	BZ	Ζ

35 dBZ

DZ Paint

Application of a "next hour neighborhood" (7.5 km radius)

- Small neighborhoods provide a balance between spreading information in low confidence events while preserving precision of high confidence events
- Underdispersion in WoFS creates trade off
 between reliability and precision
- A highly confident 0-3 h forecast of a mesocyclone with small spatial errors (< ~50 km) is useful to most end users
- Goal is to apply object-based methods to probability swaths to quantify forecast consistency while maintaining spatial specificity

3-hr Forecast Probabilities of 2-5 km UH > 60 m² s⁻² 7.5 km Radius Neighborhood

6.0 - 0.0 -		1.		
Ens. Prob. of 2-5 km Updraft Hel. > 60 m ² s ⁻² (15km Nei		0.	9	gh.)
Ens. Prob. of 2-5 km Updraft Hel. > 60 m ² s ⁻² (1		0.3	8	5km Nei
- 0.6 - 0.5 - 0.4 - 0.4 - 0.4 - 0.4 - 0.2 - 0.1 - 0.1 - 0.1 - 0.1		0.	7	m ² s ⁻² (1
- 0.5 - 0.4 - 0.4 - 0.4 - 0.2 - 0.2 - 0.1		0.	б	l el. > 60
- 0.4 - 0.3 - 0.2 - 0.1 - 0.1		0.	5	Updraft F
- 0.3 - 0.2 - 0.2 - 0.1		0.4	4	of 2-5 km
0.2 0.1	-	0.	3	ns. Prob. (
0.1		0.	2	Ē
0 dBZ		0.	1	
	and the second se	_		100 C

50	αBZ
35	dBZ
DZ	Paint

Relationship between neighborhood size and grid scale reliability:

Raw grid-scale NMEP (9 km neighborhood) Gaussianed Smoothed ($\sigma = 2$) mesocyclone probabilities а Q SE 1.0 Observed Frequency C 0.8 104 103 10 102 10^{2} 10 10 0.6 10^{0} 10^{0} 0.5 0.0 0.5 0.0 1.0 1.0 0.4 0.2 -0.2 0.6 0.4 0.8 0.4 0.8 0.2 0.6 1.0

Mean Forecast Probability

NMEP (15 km neighborhood) Gaussianed Smoothed ($\sigma = 4$)

Larger neighborhoods *improve forecast* reliability, but information on individual storm tracks is lost

Flora et al. (2019; Weather and Forecasting)

Motivates development of event based probabilities:

Spatial probabilities predict the likelihood of an event occurring within some prescribed neighborhood of a point and is not necessarily associated with a specific convective storm.

Flora et al. (2019; Weather and Forecasting)

Motivates development of event based probabilities:

Concept is similar to \bullet National Hurricane Center predictions of tropical cyclogenesis:

Methodology for event-based probabilities:

- Calculated as the percentage of ensemble members predicting UH swaths within a contiguous region
- No neighborhood
- Enhanced watershed algorithm (Lakshmanan et al. 2009) used to identify object boundaries
- Advantages:
 - Provides probabilistic guidance in format similar to paintball plot
 - Reliability may be calculated through object • matching to radar-derived proxies
- Disadvantages:
 - Many tunable parameters in object ID and matching
 - *Complex storm modes complicate object* identification

3-hr Forecast Probabilities of 2-5 km UH > 60 m2 s-2 **Event-based Probabilities**

1.0

DZ Paint

Verification of 1-2 hr, event-based mesocyclone forecasts (63 cases in 2017-2018)

- Highest CSI for probability threshold of ~20%
- Missed events during ensemble spin up limit POD ullet

- Reliable forecasts up to 50% probability
- Slight overproduction bias for higher probabilities

Flora et al. (2019; Weather and Forecasting)

Applications to point-based verification:

- The near-storm environment modulates the intensity and evolution of thunderstorms
- However, sparse observation networks rarely collect observations in most pertinent regions
- Object matching allows composite thunderstorm objects to be created using probability matching
- Composite objects verified against observations in a storm-relative framework

Potvin et al. (2020; Monthly Weather Review)

Applications to point-based verification:

- Compositing allows large samples to be collected of observations near relatively rare phenomena
- Used to quantify near- and intrastorm biases in surface temperature and dewpoint across 3 PBL schemes used by WoFS

50

30

(k) 10 **(k) (k) (**

-30

-50

50

30

(km) 10

≻ -10

-30

-50

Near-storm ASOS verification of WoFS dewpoint *temperature:*

Potvin et al. (2020; Monthly Weather Review)

1.5

Applications to point-based verification:

- Compositing allows the extent to which storms modify their environment to be lacksquarequantified
- Prediction of storm modification can be verified using specialized observations \bullet from field experiments

Courtesy Jordan Laser

Conclusions:

- Object-based verification provides an intuitive method for verifying short-term forecasts of thunderstorm hazards that emulates end users interpretation of guidance (Skinner et al. 2018)
- Identification of event-based probabilities extends object-based methods to probabilistic forecasts (Flora et al. 2019)
- Matching across ensemble members allows composite storm objects to be created and verified against point observations in a storm-relative framework (Potvin et al. 2020)

https://wof.nssl.noaa.gov/realtime

Ongoing/Future Research:

- Integration of techniques into MET+/MODE
- Development of object identification techniques for different storm modes
- Use of event based probabilities as input into machine learning models (Flora et al. 2020)
- Evaluating the impacts of reduced horizontal grid spacing on mesocyclone forecasts (Lawson et al. 2020)
- Quantification of the impacts of ensemble spin up on forecast quality

