

Using Integrated Ice Edge Error (IIEE) and Spatial Probability Score (SPS) to assess spread-error relationships in an ensemble sea ice forecast

Drew Peterson and many, many others

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Rationale

Newly coupled Ensemble Prediction System (GEPS)
 Coupled since 3 July, 2019.
 Medium Range system: 16 day forecast

 with 32 day forecasts weekly (00Z Thursday)

 Ensemble Perturbations are coming solely from Atmosphere
 What is the spread/error relationship for sea ice in GEPS?
 In context of Probability of Ice

Probability of Ice: Fraction of Ensemble Members with Sea Ice concentration above threshold of 0.15

Probability Of Ice In Hudson Bay

Metrics Used

Ensemble Mean Integrated Ice Edge Error (IIEE)

IIEE =
$$\frac{1}{N} \sum_{N} \text{IIEE}_{i} = \frac{1}{N} \sum_{N} \int dA |f_{i}(x) - O(x)|$$

= $\int dA |P(x) - O(x)| = \int dA (\sigma_{e}^{2})$

Spatial Probababilty Score (Area Integral of Brier Score)

SPS =
$$\int dA (BS) = \int dA (P(x) - O(x)))^2 = \int dA (\sigma_m^2)$$

Uncertainty / Spread

IIEE - SPS =
$$\int dA P(x) \cdot (1 - P(x)) = \int dA (\sigma_v^2)$$

Environment Environment Canada Canada Canada

Metrics Used

Note: As defined RMSE(all members) = RMSE(ensemble mean) + ensemble variance

$$\sigma_{\rm e}^2 = \sigma_{\rm m}^2 + \sigma_{\rm v}^2$$

10 Day Lead Results - Year Round

10 Day Lead Results – mean of IIEE System Comparison Calculating Mean Value of IIEE for all members.

Canada

Canada

anada

10 Day Lead Results – IIEE of mean System Comparison o Calculating IIEE from ensemble mean ice conc. IIEE of ens mean 1.41.2 · $1.0 \cdot$ SPS $(10^{12} m^2)$ 0.8 0.6 0.40.2 · Analysis 0.0 2019-06 2019-08 2019-10 2019-12 2020-02 2020-04 2020-06 2020-08 2020-10 Black line is IIEE of CMC $\stackrel{Valid Date}{ice}$ analysis vs IMS ice analysis Green line is persistence. Magenta line: GEPS validated IMS. anada anada Canada (日)

10 Day Lead Results – SPS System Comparison

September Error / Spread Relation

Canada

Spread is respectable (Max. Spread = 0.25) But system has bias (BS is large)

Environment Environnement Canada Canada

November Error in Hudson Bay

Canada

March Error in Labrador Sea

Spread is in wrong place (or too narrow).

Ice edge in wrong position.

Observed Ice Edge propagates eastward through month.

Canada

< □ > < □ > < □ > < □ > < □ > < □ >

Environment Canada Canada Canada

Application to Ensemble Oil Spill Verification

Application to Ensemble Oil Spill Verification

Summary

- Applied IIEE and SPS metrics to Ensemble Sea Ice Forecast.Needed an estimate of Spread/Error Relationship
 - > And skill benefits over deterministic system.
- IIEE minus SPS gives spread.
 - System is underdispersive.
 - > Perturbations solely from atmosphere.
- Can demonstrate added value of Ensemble
- More skillful then persistence.
 - Large uncertainties in initial conditions.
 - Skill verification against initializing analysis.
 - Likely needs incorporation into ensemble uncertainty.
- Soon to be submitted: Understanding Sources of Uncertainty and Forecast Error in a Medium Range Coupled Ensemble Sea Ice Prediction System in **The Cryosphere**

Cana

A = A = A
 A
 A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

