A SYMMETRIC SPATIAL VERIFICATION METHOD FOR SEA ICE EDGES

Angela Cheng ${ }^{1,2}$, Barbara Casati ${ }^{3}$, Adrienne Tivy ${ }^{1}$, Jean-François Lemieux ${ }^{3}$, and L. Bruno Tremblay ${ }^{2}$
${ }^{1}$ Canadian Ice Service, Environment and Climate Change Canada, Ottawa, Ontario, Canada
${ }^{2}$ Department of Atmospheric and Oceanic Sciences, McGill University, Montréal, Quebec, Canada
${ }^{3}$ Recherche en Prévision Numérique Environnementale, Environnement et Changement Climatique Canada, Dorval, Quebec, Canada

November 13 @ 15:00 UTC, 2020

ICE EDGE VERIFICATION METHODS

Goessling, H. F., Tietsche, S., Day, J. J., Hawkins, E., and Jung, T. (2016), Predictability of the Arctic sea ice edge, Geophys. Res.

Lett., 43, 1642-1650, doi:10.1002/2015GL067232.

WHY USE A DISTANCE METRIC?

Similarity measure: it answers how similar two lines are

DISTANCE METHODS

Kaspar, D.. "Application of Directional Antennas in RF-Based Indoor Localization Systems." (2005).

Guo, Ning \& Ma, Mengyu \& Xiong, Wei \& Chen, Luo \& Jing, Ning. (2017). An Efficient Query Algorithm for Trajectory Similarity Based on Fréchet Distance Threshold. ISPRS International Journal of Geo-Information. 6. 326. 10.3390/ijgi6110326.

The Fréchet distance is more computationally complex; most applications use Hausdorff in practice.

DISTANCES WITHIN THE HAUSDORFF FAMILY DUBUISSON AND JAIN (1994)

Forward distances:
$d(a, B)_{a \in A}$
distances from each grid-point a belonging to the set A, to the set B

Backward distances:
$d(b, A)_{b \in B}$

The metric is made symmetric by taking the maximum:

$$
\begin{gathered}
\operatorname{Haus}(A, B)=\max \left\{\max _{a \in A} d(a, B) ; \max _{b \in B} d(b, A)\right\} \\
\operatorname{PartHaus}(A, B)=\max \left\{q_{0.50} d(a, B)_{a \in A} ; q_{0.50} d(b, A)_{b \in B}\right\} \\
\operatorname{ModHaus}(A, B)=\max \left\{\operatorname{mean}_{a \in A} d(a, B) ; \operatorname{mean}_{b \in B} d(b, A)\right\}
\end{gathered}
$$

DO WE WANT A METRIC?

Definition: a metric M between two sets of pixels A and B satisfies:

1. Positivity: $M(A, B) \geq 0$
2. Separation: $M(A, B)=0$ if and only if $A=B$
3. Symmetry: $M(A, B)=M(B, A)$
4. Triangle Inequality: $M(A, C)+M(C, B) \geq M(A, B)$

$\operatorname{PartHaus}(A, B)=\max \left\{q_{0.50} d(a, B)_{a \in A} ; q_{0.50} d(b, A)_{b \in B}\right\}$

$\operatorname{ModHaus}(A, B)=\max \left\{\operatorname{mean}_{a \in A} d(a, B) ;\right.$ mean $\left._{b \in B} d(b, A)\right\}$

ALGORITHM

Step 1: Triangulate.

Step 2: Make the solution unique.

Forward/ backward

Step 1

Step 2

Final result

Forward

Backward

The limitation is that it does not account for full sequencing of points.

Results of the algorithm

$$
\begin{aligned}
d(x, y) & \geq 0 \text { for all } x, y \in X \\
d(x, y) & =0 \Leftrightarrow x=y \\
d(x, y) & =d(y, x) \\
d(x, y) & \leq d(x, z)+d(z, y)
\end{aligned}
$$

Hausdorff—points are skipped so it is out of sequence.

What about new ice growth, when there is no edge to compare against?

New ice growth is not considered. If there is no linear feature to compare against, then the algorithm ignores it.

What about when the edges cross?

Absolute distances

Signed distances

NEXT STEPS?

- Try the algorithm on some YOPP datasets

angela.cheng@canada.ca

