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Climate model evaluation

• Modern, large-scale climate models are popular for exploring the impact of humans

on future climate (and the potential impact of future climate on humans).

• Climate models can be evaluated by comparing their faithfulness in mimicking the

overall behavior of observed data.

• A model's de�ciencies in describing observed climate will likely be ampli�ed for

future predictions and may weaken their usefulness in making decisions.

• We desire to evaluate the accuracy of the state-of-the-art NA-CORDEX climate

models (Mearns et al., 2017) in representing the state-of-the-art ERA5 reanalysis

data (Copernicus Climate Change Service (C3S), 2017).

• We propose two permutation-based approaches for comparing the models.



Reanalysis background

• A climate reanalysis feeds large amounts of observational data into data

assimilation models to provide a summary of recent climate for many variables,

e.g., surface air temperature, total precipitation, and wind speed.

• The response values are typically provided on a grid over substantial parts of the

earth.

• A individual researcher is unlikely to be able to obtain the many data sources used

for the product, nor will they be able to process the data using standard computing

resources.



ERA5 information

• The ERA5 global reanalysis is the 5th generation of reanalysis produced by the

European Centre for Medium-Range Weather Forecasts (Hersbach et al., 2020).

• The currently available data stretches from 1979 to approximately the present day.

• The data are available at several spatial and temporal resolutions.

• The data assimilate 74 data sources (European Centre for Medium-Range Weather

Forecasts, 2020) using a 4D-Var ensemble data assimilation system.



GCM vs RCM resolution

• GCMs model environmental factors and climate dynamics on a coarse scale (≈
150-200 km spatial resolution).

• RCMs use information from the GCMs to make predictions on a much �ner scale.

*From the World Meteorological Organization



NA-CORDEX information

• The North American Coordinated Regional Downscaling Experiment

(NA-CORDEX) is focused on downscaling climate output in the North American

domain using boundary conditions from the CMIP5 archive (Hurrell et al., 2011).

• Data are available from 1950-2100 at �ne temporal and spatial resolutions.

− The NARCCAP data have been bias-corrected using the Multivariate Bias

Correction (Cannon, 2018)using the Daymet data product as a reference

(Thornton et al., 2018).

• There are combinations of 6 di�erent GCMs to provide the boundary conditions for

7 di�erent RCMs under 2 sets of future conditions, though not all combinations

are currently available.



NA-CORDEX domain



Comparing the ERA5 and NA-CORDEX data

• We restrict our use of the ERA5 data to the same subdomain as the NA-CORDEX

data and land masses.

• Both data sets are available on the same 0.5◦ spatial grid.

• We utilize monthly average of maximum daily 2 meter temperature.

− Other variables may not be reliable to compare.

• The historical period for the NA-CORDEX data runs from 1950-2005, while the

ERA5 data we consider runs from 1979-present day.

− We restrict our analysis to monthly temperature for the complete years

1979-2004 due to data problems in 2005.

• There is a single realization of the ERA5 data available and 15 realizations of

NA-CORDEX data with these characteristics.



Tests we consider

• We consider a distributional equality test H0 : F
R(s) = FM(s) versus

Ha : F
R(s) 6= FM(s), where F denotes the distribution of the data at location s.

− R and M refer to the �Reanalysis data� and �Model� data, respectively.

− The distributional test can't tell us HOW the distributions di�er.

• Generically, let θ denote a well-de�ned characteristic of F .

− θ(s) indicates that the characteristic is for location s.

• To assess HOW the distributions di�er, we test H0 : θ
R(s) = θM(s) versus

Ha : θ
R(s) 6= θM(s).



Standard permutation tests

• Permutation tests (Fisher, 1935) are a standard, nonparametric procedure for

testing hypotheses while making minimal assumptions.

− A test statistic is computed for the original data and for many permutations

under the null hypothesis that the data are exchangeable across groups.

• In this context, a standard permutation test permutes the random �elds across the

reanalysis and climate model groups.

• A limitation in our context is that while there are 16! permutations of the data

indices, there may only be 16 unique combinations of the data leading to di�erent

test statistics

− For example, the sample mean of the model group will not change if the 15

models are permuted.

• Testing at a signi�cance level of 0.10, the test statistic for the observed data will

have to be more extreme than every test statistic resulting from a data

permutation in order to conclude statistical signi�cance.
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Strati�ed permutation tests

• Matchett et al. (2015) introduced a general strati�ed permutation test to test

whether rare stressors had impact on certain animal species after controlling for

certain covariates.

− After stratifying their data, responses within each strata were exchangeable

under the null hypothesis.

• We permute whole spatio-temporal random �elds within the same year across

climate models but permute each year independently.

− Spatio-temporal dependence is preserved within each year.

− Potential non-stationarity between years is respected.

− Wilks (1997): �Simultaneous application of the same resampling patterns to

all dimensions of the data vectors will yield resampled statistics re�ecting the

cross correlations in the underlying data, without the necessity of explicitly

modeling those cross correlations.�

• We have 1626 > 2× 231 e�ective permutations, substantially increasing power.



Permutation examples
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Test of distributional equality
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Tests of 26-year mean
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Tests of 26-year standard deviation
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Tests of 26-year 0.05 quantile
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Tests of 26-year 0.25 quantile
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Tests of 26-year 0.50 quantile

(a) standard

longitude

la
tit

ud
e

−150 −100 −50

20
30

40
50

60
70

(b) stratified

longitude

la
tit

ud
e

−150 −100 −50

20
30

40
50

60
70

0.000 0.010 0.050 0.100

Test of 26−year 0.50 quantile



Tests of 26-year 0.75 quantile
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Tests of 26-year 0.95 quantile
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Tests of 26-year interquartile range
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Deviations of 26-year means and standard deviations
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Deviations of 26-year 0.05 and 0.25 quantiles
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Deviations of 26-year 0.50 and 0.75 quantiles
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Deviations of 26-year 0.95 quantiles and IQRs
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Discussion

• The distribution and various characteristics of the reanalysis and climate model

distributions are statistically di�erent throughout much of the spatial domain.

• No spatial tests adjusted for multiple comparisons.

− O�-the-shelf multiple comparisons adjustments are di�cult because the

precision of the p-value is directly related to the number of simulations and

adding a decimal place of precision (even without accounting for Monte Carlo

uncertainty) requires 10 times the computational cost.

• We might want to compare the distributional equality test that we proposed with

the the T-metric proposed by Tian et al. (2017), which was custom-made to

compare climate model simulations to each other.

• Angélil et al. (2016) recommend using multiple reanalyses data sets when

performing climate model evaluation, so perhaps we should augment our current

analysis by including reanalysis data from NASA's MERRA2 program and possibly

the NCEP Climate Forecast System Reanalysis and the Japanese 55-year

Reanalysis.



Discussion

• RCM outputs forced by the same GCM boundary conditions are NOT independent.

− Rerun using only one RCM per GCM.

− Lose some power.

• Better way to quantify the functional discrepancy between the datum?
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