

18 November 2020

Choices in the verification of S2S forecasts

Andrea Manrique-Suñén¹, Nube Gonzalez Reviriego¹, Verónica Torralba¹, Nicola Cortesi¹ and Francisco J. Doblas-Reyes^{1,2}

(1) Barcelona Supercomputing Center

(2) Institució Catalana de Recerca i Estudis Avançats

2020 International Verification Method Workshop Online

- 1. S2S Predictions and Climate Services
- 2. Challenges in verification of S2S predictions
- 3. Implications for skill scores

Manrique-Suñén, A., N. Gonzalez-Reviriego, V. Torralba, N. Cortesi, and F. J. Doblas-Reyes, 2020: Choices in the Verification of S2S Forecasts and Their Implications for Climate Services. *Mon. Wea. Rev.*, **148**, 3995–4008, <u>https://doi.org/10.1175/MWR-D-20-0067.1</u>.

1. S2S Predictions and Climate Services

2. Challenges in verification of S2S predictions

3. Implications for skill scores

Manrique-Suñén, A., N. Gonzalez-Reviriego, V. Torralba, N. Cortesi, and F. J. Doblas-Reyes, 2020: Choices in the Verification of S2S Forecasts and Their Implications for Climate Services. *Mon. Wea. Rev.*, **148**, 3995–4008, <u>https://doi.org/10.1175/MWR-D-20-0067.1</u>.

S2S Predictions

Qualitative estimate of forecast skill based on forecast range from short-range weather forecasts to long-range seasonal predictions, including potential sources of predictability. Relative skill is based on differing forecast averaging periods. (Source: White et al., 2017)

and Climate Services

 S2S forecast range corresponds to timing useful for many societal sectors

 The uptake of S2S predictions into actionable decisions comes with many challenges

Challenges of climate services

Scientist: Probabilistic information, skill assessment, bias adjustment, etc.

- 1. The **probabilistic** nature of climate predictions
 - Convey probabilistic information in a clear way (i.e. most likely tercile map)
 - Convert a probability in to an actionable decision
- 2. Expectations on **quality** of predictions to increase usability:
 - Provide predictions with associated information on skill
 - Skill scores, not only how good, but home much better than a reference (i.e. RPSS)
 - Seasonal and regional dependence of skill

Need for a **probabilistic verification**

Example of a climate service: S2S4E Project Decision Support Tool

www.s2s4e.eu

1. S2S Predictions and Climate Services

2. Challenges in verification of S2S predictions

3. Implications for skill scores

Manrique-Suñén, A., N. Gonzalez-Reviriego, V. Torralba, N. Cortesi, and F. J. Doblas-Reyes, 2020: Choices in the Verification of S2S Forecasts and Their Implications for Climate Services. *Mon. Wea. Rev.*, **148**, 3995–4008, <u>https://doi.org/10.1175/MWR-D-20-0067.1</u>.

Challenges in the verification of S2S predictions

- Heterogeneity in the subseasonal systems
 - Initializations
 - Hindcast periods
 - Ensemble members

Forecast	Hindcast
X Fewer years of data	More years of data
X Different system version	 Fixed system version
 More ensemble members 	X Fewer ensemble members

- Limited data (even in hindcast)
 - Sample size for probabilistic skill scores
 - Definition of the climatology
 - Application of bias adjustment

	Forecast			Hindcasts				
Status on 2020-10-27	Time range	Resolution	Ens. Size	Frequency	Re- forecasts	Rfc length	Rfc frequency	Rfc size
BoM (ammc)	d 0-62	T47L17	3*11	2/week	fixed	1981-2013	6/month	3*11
CMA (babj)	d 0-60	T266L56	4	2/week	on the fly	past 15 years	2/week	4
CNR-ISAC (isac)	d 0-32	0.75x0.56 L54	41	weekly	fixed	1981-2010	every 5 days	5
CNRM (Ifpw)	d 0-47	T255L91	25	weekly	fixed	1993-2017	every 7 days	10
ECCC (cwao)	d 0-32	39 km L45	21	weekly	on the fly	1998-2017	weekly	4
ECMWF (ecmf)	d 0-46	Tco639/319 L91	51	2/week	on the fly	past 20 years	2/week	11
HMCR (rums)	d 0-61	1.1x1.4 L28	20	weekly	on the fly	1985-2010	weekly	10
JMA (rjtd)	d 0-33	TI479/TI319L100	50	weekly	fixed*	1981-2010	2/month	13
KMA (rksl)	d 0-60	N216L85	4	daily	on the fly	1991-2016	4/month	3
NCEP (kwbc)	d 0-44	T126L64	16	daily	fixed	1999-2010	daily	4
UKMO (egrr)	d 0-60	N216L85	4	daily	on the fly	1993-2016	4/month	7

https://confluence.ecmwf.int/display/S2S/Models

- **1. S2S Predictions and Climate Services**
- 2. Challenges in verification of S2S forecasts
- 3. Implications for skill scores

Manrique-Suñén, A., N. Gonzalez-Reviriego, V. Torralba, N. Cortesi, and F. J. Doblas-Reyes, 2020: Choices in the Verification of S2S Forecasts and Their Implications for Climate Services. *Mon. Wea. Rev.*, **148**, 3995–4008, <u>https://doi.org/10.1175/MWR-D-20-0067.1</u>.

Verification setup in our study

- ECMWF-Ext-ENS 2016 System
- Hindcast period: 1996-2015, 11 members
- Reference: ERA- Interim reanalysis
- Target forecast weeks:

v	veek 1	week 2	week 3	week 4	
С	lays 5-11	days 12-18	days 19-25	days 26-32	

Startdate

e.g. Monday

• Bias adjustment: Simple bias correction

$$y_{ij} = (x_{ij} - \bar{x})\frac{\sigma_{ref}}{\sigma_e} + \bar{o}$$

y_{ij} adjusted forecast,x_{ij} j: member, i: year

• Fair RPSS for tercile categories / Fair CRPSS

$$SS = \frac{S_{fcst} - S_{clim}}{S_{perf} - S_{clim}} = 1 - \frac{S_{fcst}}{S_{clim}}$$

SS > 0 Forecast is better than climatology

SS < 0 Forecast is worse than climatology

CHOICES:

- Sample size for skills cores: 2 options
- Definition of climatology: 3 options

Choices in sample size for the skill score and definition of climatology

SAMPLE SIZE FOR SKILL SCORE:

- Single start date: 1 start date, 20 years
- Monthly start dates: 8/9 start dates, 20 years

DEFINITION OF CLIMATOLOGY:

Weekly: 1 start date, 20 years

Monthly: All start dates in a calendar month, 8/9 start dates, 20 years Monthly running window: Running window with 4 start dates before and after the target week, 9 start dates, 20 years

Climatology used for: - Reference for anomalies

- Benchmark forecast
- Bias adjustment

8 Verification setups

Methodology	Skill score	Climatology	Bias correction
1	Single start date (1 start date)	Weekly (1 start date)	Raw
2	Single start date (1 start date)	Weekly (1 start date)	Simple bias adjustment
3	Monthly (concatenating 8/9 start dates)	Weekly (1 start date)	Raw
4	Monthly (concatenating 8/9 start dates)	Weekly (1 start date)	Simple bias adjustment
5	Monthly (concatenating 8/9 start dates)	Monthly (8/9 start dates)	Raw
6	Monthly (concatenating 8/9 start dates)	Monthly (8/9 start dates)	Simple bias adjustment
7	Monthly (concatenating 8/9 start dates)	Monthly running window (9 start dates)	Raw
8	Monthly (concatenating 8/9 start dates)	Monthly running window (9 start dates)	Simple bias adjustment

April Fair RPSS terciles - Fcst time: Days 12-18

Same hindcast, 4 ways to perform forecast quality assessment (fair RPSS) Var: 2m temperature

Concatenating startdates 8/9*20 yrs data-obs pairs

Single start date: Too noisy to compute skill score (20 data-obs pairs)

Weekly climatology Simple bias adjustment degrades skill

-0.2 -0.1 -0.1 -0.2 -0.2 -0.3 -0.4

0.9

0.8

0.7

0.6

0.5

0.4

0.3

Monthly climatology Apparently good skill but ... (... next slide)

Monthly climatology running window

More robust climatology for bias adjustment – less degradation

-0.9

-0.5

-0.6

-0.7

-0.8

Annual evolution for a region in North America, for forecast days 12-18

$$SS = 1 - \frac{S_{fcst}}{S_R}$$

April Fair CRPSS - Fcst time: Days 12-18

Same hindcast, 4 ways to perform forecast quality assessment (fair CRPSS) Var: 2m temperature

Concatenating startdates 8/9*20 yrs data-obs pairs

Single start date: Too noisy to compute skill score (20 data-obs pairs)

Weekly climatology Simple bias adjustment degrades skill

Monthly climatology Apparently good skill but (next slide)

Monthly climatology running window

More robust climatology for bias adjustment – less degradation

-0.9

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

-0.1

-0.2

-0.3

-0.4

-0.5

-0.6

-0.7

-0.8

CRPSS

Fair

Annual evolution for a region in North America, for forecast days 12-18

$$SS = 1 - \frac{S_{fcst}}{S_R}$$

Conclusions

- SAMPLE SIZE: One single start date is not enough for a robust skill score with a 20 years hindcast. Concatenating several start dates is a good approach to increase the sample size and produce robust skill scores
- BIAS ADJUSTMENT: The reference climate distribution to bias adjust weekly averages should span a longer period than one week
- CLIMATOLOGY: The aggregation period to compute the climatology should be centered around the target week. Using a calendar month to compute climatology can lead to "artificial skill" when computing skill scores.

--> It is fundamental to carefully document all verification procedures !

Thank you, Questions?

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Manrique-Suñén, A., N. Gonzalez-Reviriego, V. Torralba, N. Cortesi, and F. J. Doblas-Reyes, 2020: Choices in the Verification of S2S Forecasts and Their Implications for Climate Services. *Mon. Wea. Rev.*, **148**, 3995–4008, <u>https://doi.org/10.1175/MWR-D-20-0067.1</u>.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 776787.

andrea.manrique@bsc.es