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S2S Predictions and Climate Services

WEATHER FORECASTS
predictability comes from initial

atmospheric conditions e S2S forecast range corresponds to timing
S2S PREDICTIONS useful for many societal sectors

predictability comes from initial
atmospheric conditions, monitoring the
land/sea/ice conditions, the stratosphere

excellent and other sources
SEASONAL OUTLOOKS Renewable energy

- predictability comes primarily from
= good sea-surface temperature conditions;
% accuracy is dependent on ENSO state
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Daily valuss

Weekly averages

10-30 days 4 Monthly or seasonal averages
30-90+ days

FORECAST RANGE

Qualitative estimate of forecast skill based on forecast range from short-range weather
forecasts to long-range seasonal predictions, including potential sources of predictability. °
Relative skill is based on differing forecast averaging periods. (Source: White et al., 2017 )

The uptake of S2S predictions into
actionable decisions comes with many
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Challenges of climate services

User: How much energy
will | produce next
month?

Scientist: Probabilistic
information, skill
assessment, bias
adjustment, etc.

1. The probabilistic nature of climate predictions

* Convey probabilistic information in a clear way (i.e. most likely tercile map )
 Convert a probability in to an actionable decision

2. Expectations on quality of predictions to increase usability:

* Provide predictions with associated information on skill
- Skill scores, not only how good, but home much better than a reference (i.e. RPSS)
- Seasonal and regional dependence of skill

8-

Need for a probabilistic verification
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Challenges in the verification of S2S predictions

* Heterogeneity in the subseasonal systems
* Initializations
* Hindcast periods

e  Ensemble members

¢ Fewer years of data + More years of data

¢ Different system version + Fixed system version

« More ensemble members x Fewer ensemble members

* Limited data (even in hindcast)
*  Sample size for probabilistic skill scores
*  Definition of the climatology

*  Application of bias adjustment

Subseasonal-to-Seasonal

S2S

Prediction Project
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Status on
2020-10-27

BoM (ammc)

CMA (babj)

CNR-ISAC
(isac)

CNRM (Ifpw)
ECCC (cwao)
ECMWF (ecmf)
HMCR (rums)
JMA (rjtd)
KMA (rksl)
NCEP (kwhbc)

UKMO (egrr)

‘ Forecast ’
|

Time Resolution Ens. Frequency
range Size
d0-62 TA4TL17 31 2/ week
d 0-60 T266L56 4 2/ week
d0-32 0.75x0.56 L54 41 weekly
d 0-47 T255L91 25 weekly
d0-32 39 km L45 21 weeldy
d 0-46 TeoB39/319 L91 51 2/ week
d 0-61 1.1x1.4 L2§ 20 weekly
d0-33 TI479/TI319L100 | 50 weekly
d 0-60 MN216L85 4 daily
d 0-44 T126L64 16 daily
d 0-60 N216L85 4 daily

Re-
forecasts

fixed

on the fly

fixed

fixed
on the fly
on the fly
on the fly
fixed®
on the fly
fixed

on the fly

[ Hindcasts }

Rfc length

1981-2013

past 15 years

1981-2010
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1998-2017
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1985-2010
1981-2010
1991-2016
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1993-2016

Rfc
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B&/month

2 week

every 5 days

every 7 days
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2 /week
weekly
2/month
4/month
daily
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n

10

4

11

10

13

3

4

7

https://confluence.ecmwf.int/display/S2S/Models
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Verification setup in our study

« ECMWEF-Ext-ENS 2016 System * Bias adjustment: Simple bias correction

* Hindcast period: 1996-2015, 11 members

* Reference: ERA- Interim reanalysis vij = (x;j — X) Oref + 0  vyadiusted forecastx,
J Y O j: member, i: year

e Target forecast weeks:

week 1 week 2 week 3 week 4 . i . :
| days5-11 | days 12-18 | days 19-25 | days 2632 |  Fair RPSS for tercile categories / Fair CRPSS
| >

Startdate SS >0 Forecast is better than

e.g. Monday S — Sfcst - Sclim _1_ Sfcst climatology
Sperf ~ Sciim Sctim SS< 0 Forecast is worse than

climatology

CHOICES:

* Sample size for skills cores: 2 options

* Definition of climatology: 3 options
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Choices in sample size for the skill score and definition of climatology

x 20 years (1999-2015)

>
3rd  7th  qQth 14th 17th  21th 9ogth 31th E 7th  11th  14th 18th 21th 2sgth 28th[ ond  gth  gth  qth
weeky
P

monthly clim

monthly clim running window

MARCH APRIL MAY
SAMPLE SIZE FOR SKILL SCORE: DEFINITION OF CLIMATOLOGY:
* Single start date: 1 start date, 20 years : 1 start date, 20 years
« Monthly start dates: 8/9 start dates, 20 years Monthly: All start dates in a calendar month, 8/9 start dates, 20 years

Monthly running window: Running window with 4 start dates before
and after the target week, 9 start dates, 20 years

Climatology used for: - Reference for anomalies
7 ‘ - Benchmark forecast
Barcelona . .
Supercomputing - Bias adjustment
Center
Centro Nacional de Supercomputacion
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8 Verification setups

Single start date (1 start date) Weekly (1 start date)
2 Single start date (1 start date) Weekly (1 start date) Simple bias adjustment
3 Monthly (concatenating 8/9 start dates) Weekly (1 start date) Raw
4 Monthly (concatenating 8/9 start dates) Weelkly (1 start date) Simple bias adjustment
5 Monthly (concatenating 8/9 start dates) Monthly  (8/9 start dates) Raw
6 Monthly (concatenating 8/9 start dates) Monthly  (8/9 start dates) Simple bias adjustment
7 Monthly (concatenating 8/9 start dates) Monthly running window Raw
(9 start dates)
8 Monthly (concatenating 8/9 start dates) Monthly running window Simple bias adjustment

(9 start dates)
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Same hindcast, 4 ways to
perform forecast quality
assessment (fair RPSS)
Var: 2m temperature

Concatenating
startdates
8/9%20 yrs
data-obs pairs
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April Fair RPSS terciles - Fcst time: Days 12-18

1) Single start date (raw)

(3) Monthly start dates,
weekly clim (raw)

(2) Single start date (simple bias)

(4) Monthly start dates,
weekly clim (simple bias)
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(5) Monthly start dates,
monthly cllm(raw)

T

(6) Monthly start dates,
monthly clim (smple blas)

(7) Monthly start dates,
monthly clim running window (raw)

(8) Monthly start dates,
monthly clim running window (simple bias)
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Fair RPSS

Single start date:
Too noisy to compute skill
score (20 data-obs pairs)

climatology
Simple bias adjustment
degrades skill

climatology
Apparently good skill but ...
(... next slide)

Monthly climatology running
window

More robust climatology for bias
adjustment — less degradation



@

Annual evolution for a region
in North America, for forecast
days 12-18

S
s§=1-21&
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Fair RPSS
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ECMWF-Ext-ENS monthly clim
ECMWF-Ext-ENS monthly clim running window

ECMWF-Ext-ENS monthly clim
ECMWF-Ext-ENS monthly clim running window
Reference: ERA-I monthly clim
Reference: ERA-I monthly clim running window
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Same hindcast, 4 ways to
perform forecast quality
assessment (fair CRPSS)
Var: 2m temperature

Concatenating
startdates
8/9%20 yrs
data-obs pairs
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April Fair CRPSS - Fcst time: Days 12-18

(2) Single start date (simple bias)

(1) Single start date (raw)

(3) Monthly start dates,

(4) Monthly start dates,

weekly clim (raw)

weekly cllm (8|mple bias)

(5) Monthly start dates,
monthly clim (raw)

A2

(6) Monthly start dates,

monthly clim (simple bias)
ll’lc’::’l”,.v:',,,,,” T, /;"’"""”

72,
AL 7

(7) Monthly start dates,
monthly clim runnmg window (raw)

(8) Monthly start dates,
monthly cllm runnmg wmdow (simple bias)
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Too noisy to compute skill
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climatology
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.. (next slide)

Monthly climatology running
window

More robust climatology for bias
adjustment — less degradation
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Annual evolution for a region
in North America, for forecast
days 12-18

S
SS =1 — fcst
S R
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Fair RPSS

Fair CRPSS
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a)

—— ECMWF-Ext-ENS monthly clim
ECMWF-Ext-ENS monthly clim running window

ECMWF-Ext-ENS monthly clim

ECMWF-Ext-ENS monthly clim running window

Reference: ERA-I monthly clim

Reference: ERA-I monthly clim running window

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
b)
— ECMWF-Ext-ENS monthly clim —— ECMWF-Ext-ENS monthly clim
ECMWF-Ext-ENS monthly clim running window -+ ECMWF-Ext-ENS monthly clim running window
-R- Reference: ERA-I monthly clim
- R - Reference: ERA-I monthly clim running window
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Conclusions

 SAMPLE SIZE: One single start date is not enough for a robust skill score with a 20 years hindcast.
Concatenating several start dates is a good approach to increase the sample size and produce
robust skill scores

* BIAS ADJUSTMENT: The reference climate distribution to bias adjust weekly averages should
span a longer period than one week

* CLIMATOLOGY: The aggregation period to compute the climatology should be centered around
the target week. Using a calendar month to compute climatology can lead to “artificial skill”
when computing skill scores.

--> |t is fundamental to carefully document all verification procedures !
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