

Helmholtz Young Investigator Group VH-NG-1243: "Sub-seasonal **PRE**dict**A**bility: understanding the role of **D**iabatic **OUT**flow" (SPREADOUT)

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Deep Learning for the Verification of Synoptic-scale Processes in NWP and Climate Models

Julian F. Quinting¹, Christian M. Grams¹ and Jan Wandel¹

¹Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Germany (julian.quinting@kit.edu)

WCBs affect lifecycle of blocking and blocking regimes

Does a misrepresentation of WCBs explain blocking biases in NWP and climate models?

2 International Verification Methods Workshop Online 11 November 2020

WCB identification requires trajectory calculations based on data at a high spatio-temporal resolution

Data	ERA-INTERIM	
amount	~ 58,400 time steps	
availability	Grid: 1° at 61 vertical model levels Temporal availability: 6-hourly	
	Trajectory calculation	

WCB identification requires trajectory calculations based on data at a high spatio-temporal resolution

Data	ERA-INTERIM	S2S data base
amount	~ 58,400 time steps	~ 6,439,356 time steps
availability	Grid: 1° at 61 vertical model levels Temporal availability: 6-hourly Trajectory calculation	Grid: 1.5° at 10 pressure levels Temporal availability: 24-hourly Trajectory calculation

WCB identification requires trajectory calculations based on data at a high spatio-temporal resolution

Data	ERA-INTERIM	S2S data base
amount	~ 58,400 time steps	~ 6,439,356 time steps
availability	Grid: 1° at 61 vertical model levels Temporal availability: 6-hourly Trajectory calculation	Grid: 1.5° at 10 pressure levels Temporal availability: 24-hourly Trajectory calculation

Train CNNs to identify WCB objects from routinely available fields!

5 International Verification Methods Workshop Online 11 November 2020

UNet-type convolutional neural network

UNet-type convolutional neural network

Ronneberger et al. 2015

- Predictand y: binary fields (0/1 flag) of WCB inflow, ascent and outflow based on ERA-I (Madonna et al. 2014; Thanks to ETH Zurich Atmospheric Dynamics group for sharing the data.)
- Predictors x₁...x_n: based on ERA-I of U, V, T, Z, Q on pressure level (Quinting and Grams 2020; JAS in revision)

- Predictand y: binary fields (0/1 flag) of WCB inflow, ascent and outflow based on ERA-I (Madonna et al. 2014; Thanks to ETH Zurich Atmospheric Dynamics group for sharing the data.)
- Predictors x₁...x_n: based on ERA-I of U, V, T, Z, Q on pressure level (Quinting and Grams 2020; JAS in revision)

Predictors for WCB inflow

- thickness advection at 700 hPa
- meridional moisture flux at 850 hPa
- moisture flux divergence at 1000 hPa
- moist PV at 500 hPa
- climatological inflow frequency

- Predictand y: binary fields (0/1 flag) of WCB inflow, ascent and outflow based on ERA-I (Madonna et al. 2014; Thanks to ETH Zurich Atmospheric Dynamics group for sharing the data.)
- Predictors x₁...x_n: based on ERA-I of U, V, T, Z, Q on pressure level (Quinting and Grams 2020; JAS in revision)

Predictors for WCB ascent

- rel. vorticity at 850 hPa
- rel. humidity at 700 hPa
- thickness advection at 300 hPa
- meridional moisture flux at 500 hPa
- climatological ascent frequency

10 International Verification Methods Workshop Online 11 November 2020

- Predictand y: binary fields (0/1 flag) of WCB inflow, ascent and outflow based on ERA-I (Madonna et al. 2014; Thanks to ETH Zurich Atmospheric Dynamics group for sharing the data.)
- Predictors x₁...x_n: based on ERA-I of U, V, T, Z, Q on pressure level (*Quinting and Grams 2020; JAS in revision*)

Predictors for WCB outflow

- irr. wind speed at 300 hPa
- static stability at 500 hPa
- rel. humidity at 300 hPa
- rel. vorticity at 300 hPa
- climatological outflow frequency

Dataset	Time period
Training	1 Jan 1980 – 31 Dec 1999
Validation	1 Jan 2000 – 31 Jan 2004
Testing	1 Jan 2005 – 31 Dec 2016

Testing of 72 hyperparameter concerning choice of number of filters, batch size, and dropout fraction to find the best CNN model.

12 International Verification Methods Workshop Online 11 November 2020

Model evaluation – Case study

Sea level pressure [hPa] — WCB probability predicted by CNN

International Verification Methods Workshop Online 13 11 November 2020

Model evaluation – Reliability

CNN ERAI = CNN model trained on ERA-I

14International Verification Methods Workshop Online11 November 2020

Model evaluation – Reliability

Bias correction does not lead to improvement for inflow and outflow

CNN ERAI = CNN model trained on ERA-I | CNN JRA55 = CNN ERAI applied to JRA55 reanalysis

15 International Verification Methods Workshop Online 11 November 2020

Model evaluation – Reliability

Sensitivity tests reveal predictor variables that deteriorate the reliability The CNN model is not only a "black box", it may be a useful error diagnostic

CNN ERAI = CNN model trained on ERA-I | CNN JRA55 = CNN ERAI applied to JRA55 reanalysis

16 International Verification Methods Workshop Online 11 November 2020

Model evaluation – Climatology

Convert predicted probabilities to binary prediction by minimizing climatological bias.

By definition, climatology for WCB inflow, ascent and outflow is well reproduced.

17 International Verification Methods Workshop Online 11 November 2020

 $MCC = \frac{TP \times TN - FP \times FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}$

- MCC=+1 \rightarrow perfect forecast
- MCC=-1 → total disagreement between forecast and observation
- useful for imbalanced data
- high score only if good results for TP, TN, FP, FN

18 International Verification Methods Workshop Online 11 November 2020

Matthews correlation coefficient

 $MCC = \frac{TP \times TN - FP \times FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}$

- MCC=+1 \rightarrow perfect forecast
- MCC=-1 → total disagreement between forecast and observation
- useful for imbalanced data
- high score only if good results for TP, TN, FP, FN

19 International Verification Methods Workshop Online 11 November 2020

Matthews correlation coefficient

 $MCC = \frac{TP \times TN - FP \times FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}$

- MCC=+1 \rightarrow perfect forecast
- MCC=-1 → total disagreement between forecast and observation
- useful for imbalanced data
- high score only if good results for TP, TN, FP, FN

20 International Verification Methods Workshop Online 11 November 2020

 $MCC = \frac{TP \times TN - FP \times FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}$

- MCC=+1 \rightarrow perfect forecast
- MCC=-1 → total disagreement between forecast and observation
- useful for imbalanced data
- high score only if good results for TP, TN, FP, FN

CNN Model skillfully predicts WCB occurrence in particular over the storm track regions.

International Verification Methods Workshop Online

21

11 November 2020

Using Deep Learning for the Verification of Synoptic-scale processes in NWP and Climate Models

0.7

Take-home messages

First CNN-based diagnostic that identifies Lagrangian features. The approach reduces computational time by a factor of \sim 30.

Model skillfully identifies WCB inflow, ascent and outflow footprints.

CNN significantly outperforms previous logistic regression model.

The CNN model is not only a "black box", it may be useful to advance process understanding

International Verification Methods Workshop Online 22 11 November 2020

0.2 0.0

0.4 0.5

