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WCBs affect lifecycle of blocking and blocking regimes
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Quinting and Vitart 2019

Does a misrepresentation of WCBs explain blocking 
biases in NWP and climate models?

Pfahl et al. 2015; Steinfeld and Pfahl 2019
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WCB identification requires trajectory calculations based on data 
at a high spatio-temporal resolution

Data ERA-INTERIM S2S data base

amount ~ 58,400 time steps ~ 6,439,356 time steps

availability
Grid: 1° at 61 vertical model levels

Temporal availability: 6-hourly
Grid: 1.5° at 10 pressure levels
Temporal availability: 24-hourly

Trajectory calculation Trajectory calculation
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WCB identification requires trajectory calculations based on data 
at a high spatio-temporal resolution

Data ERA-INTERIM S2S data base

amount ~ 58,400 time steps ~ 6,439,356 time steps

availability
Grid: 1° at 61 vertical model levels

Temporal availability: 6-hourly
Grid: 1.5° at 10 pressure levels
Temporal availability: 24-hourly

Trajectory calculation Trajectory calculation

Train CNNs to identify WCB objects from routinely available fields!
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RGB values of input image
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UNet-type convolutional neural network

Output

Image partitioned into multiple 
image objects

Jeong et al 2018

Ronneberger et al. 2015
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Output

Conditional probability of WCB 
inflow, ascent & outflow

Input

5 parameters characteristic of 
WCB inflow, ascent & outflow
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UNet-type convolutional neural network
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lat
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lat

Ronneberger et al. 2015
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 Predictand y: binary fields (0/1 flag) of WCB inflow, ascent and outflow based on ERA-I
(Madonna et al. 2014; Thanks to ETH Zurich Atmospheric Dynamics group for sharing the data.)

 Predictors x
1
...x

n
: based on ERA-I of U, V, T, Z, Q on pressure level

(Quinting and Grams 2020; JAS in revision)

Model development
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 Predictand y: binary fields (0/1 flag) of WCB inflow, ascent and outflow based on ERA-I
(Madonna et al. 2014; Thanks to ETH Zurich Atmospheric Dynamics group for sharing the data.)

 Predictors x
1
...x

n
: based on ERA-I of U, V, T, Z, Q on pressure level

(Quinting and Grams 2020; JAS in revision)

Predictors for WCB inflow
 thickness advection at 700 hPa
 meridional moisture flux at 850 hPa
 moisture flux divergence at 1000 hPa
 moist PV at 500 hPa
 climatological inflow frequency

WCB inflow

Model development
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 Predictand y: binary fields (0/1 flag) of WCB inflow, ascent and outflow based on ERA-I
(Madonna et al. 2014; Thanks to ETH Zurich Atmospheric Dynamics group for sharing the data.)

 Predictors x
1
...x

n
: based on ERA-I of U, V, T, Z, Q on pressure level

(Quinting and Grams 2020; JAS in revision)

Predictors for WCB ascent
 rel. vorticity at 850 hPa
 rel. humidity at 700 hPa
 thickness advection at 300 hPa
 meridional moisture flux at 500 hPa
 climatological ascent frequency

WCB ascent

Model development
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 Predictand y: binary fields (0/1 flag) of WCB inflow, ascent and outflow based on ERA-I
(Madonna et al. 2014; Thanks to ETH Zurich Atmospheric Dynamics group for sharing the data.)

 Predictors x
1
...x

n
: based on ERA-I of U, V, T, Z, Q on pressure level

(Quinting and Grams 2020; JAS in revision)

Predictors for WCB outflow
 irr. wind speed at 300 hPa
 static stability at 500 hPa
 rel. humidity at 300 hPa
 rel. vorticity at 300 hPa
 climatological outflow frequency

WCB outflow

Model development
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Dataset Time period

Training 1 Jan 1980 – 31 Dec 1999

Validation 1 Jan 2000 – 31 Jan 2004

Testing 1 Jan 2005 – 31 Dec 2016

Testing of 72 hyperparameter concerning choice of number of filters, 
batch size, and dropout fraction to find the best CNN model.

scc.kit.edu

Model development
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WCB inflow WCB ascent WCB outflow

Sea level pressure [hPa] WCB probability predicted by CNN WCB air parcel locations colored 
by height [hPa]

22 January 2011 06 UTC 23 January 2011 06 UTC 24 January 2011 06 UTC

Model evaluation – Case study 
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Model reliably predicts WCB frequency
Model slightly overestimates WCB frequency for probabilities > 0.4

CNN ERAI = CNN model trained on ERA-I

Model evaluation – Reliability 

WCB inflow WCB ascent WCB outflow
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Model evaluation – Reliability

Differences in reanalysis data reduce reliability
Bias correction does not lead to improvement for inflow and outflow
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CNN ERAI = CNN model trained on ERA-I | CNN JRA55 = CNN ERAI applied to JRA55 reanalysis

WCB inflow WCB ascent WCB outflow
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Model evaluation – Reliability

Sensitivity tests reveal predictor variables that deteriorate the reliability
The CNN model is not only a “black box”, it may be a useful error diagnostic
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CNN ERAI = CNN model trained on ERA-I | CNN JRA55 = CNN ERAI applied to JRA55 reanalysis

WCB inflow WCB ascent WCB outflow

CNN ERAI

CNN JRA55

CNN ERAI

CNN JRA55

CNN ERAI

CNN JRA55
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Lagrangian DJF WCB climatology

WCB inflow

Statistical model WCB climatology [%]

WCB ascent

WCB outflow

Convert predicted probabilities to binary 
prediction by minimizing climatological bias.

By definition, climatology for WCB inflow, 
ascent and outflow is well reproduced.

Model evaluation – Climatology 
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Lagrangian DJF WCB climatology Matthews correlation coefficient

WCB inflow
MCC=

TP×TN −FP× FN

√ (TP+FP ) (TP+FN ) (TN+FP ) (TN+FN )

 MCC=+1 → perfect forecast

 MCC=-1  → total disagreement between 
forecast and observation

 useful for imbalanced data

 high score only if good results for TP, TN, 
FP, FN

Model evaluation – Matthews Correlation Coefficient 
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Lagrangian DJF WCB climatology Matthews correlation coefficient

WCB inflow
MCC=

TP×TN −FP× FN

√ (TP+FP ) (TP+FN ) (TN+FP ) (TN+FN )

 MCC=+1 → perfect forecast

 MCC=-1  → total disagreement between 
forecast and observation

 useful for imbalanced data

 high score only if good results for TP, TN, 
FP, FN

Model evaluation – Matthews Correlation Coefficient 

WCB ascent
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WCB inflow
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WCB ascent

WCB outflow
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Lagrangian DJF WCB climatology Matthews correlation coefficient

WCB inflow
MCC=

TP×TN −FP× FN

√ (TP+FP ) (TP+FN ) (TN+FP ) (TN+FN )

 MCC=+1 → perfect forecast

 MCC=-1  → total disagreement between 
forecast and observation

 useful for imbalanced data

 high score only if good results for TP, TN, 
FP, FN

CNN Model skillfully predicts WCB 
occurrence in particular over the storm 

track regions.

Model evaluation – Matthews Correlation Coefficient 

WCB ascent

WCB outflow
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Take-home messages

Model skillfully identifies WCB inflow, ascent and outflow footprints.

CNN significantly outperforms previous logistic regression model.

The CNN model is not only a “black box”, it may be useful to advance 
process understanding

   First CNN-based diagnostic that identifies Lagrangian features.
The approach reduces computational time by a factor of ~30.
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