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• Sensors provide detailed information about the state of the atmosphere and 
land/ocean surfaces 

• Obtained from visible, shortwave, infrared, and microwave bands 

• Our studies have focused on all-sky infrared brightness temperatures because 
they provide valuable information about clouds and water vapor, both of which 
are susceptible to large errors in NWP model forecasts 

• Geostationary satellites provide routine coverage over large areas, whereas 
polar-orbiting satellites provide global coverage, but with less frequent updates 

Utility of Satellite Brightness Temperatures 



• Must convert the model forecasts into simulated, or model-equivalent, 
brightness temperatures using a forward radiative transfer model (RTM) 

• NWP model fields used by the RTM typically include T, qv, Tskin, 10-m wind 
speed, and the mixing ratios and effective diameters for five hydrometeor 
species (cloud water, rain water, ice, snow, and graupel) 

• Preferable to leave all 3-d model fields on the model’s vertical grid 

• Important to ensure that the effective particle diameters are computed 
correctly for each hydrometeor species 

• Should be computed based on assumptions made by a given 
microphysical scheme (particle density, particle size distribution, etc.) 

Simulated Satellite Brightness Temperatures 



Model Configurations: FV3-LAM 

Name 
Microphysics 

Scheme 
PBL Scheme 

Surface 
Layer 

LSM 

Control Thompson MYNN GFS Noah 

MP-NSSL NSSL MYNN GFS Noah 

MP-MG 
Morrison-
Gettelman 

MYNN GFS Noah 

PBL-SH Thompson Shin-Hong GFS Noah 

PBL-EDMF Thompson EDMF GFS Noah 

LSM-RUC_SFC-GFS Thompson MYNN GFS RUC 

LSM-RUC_SFC-MYNN Thompson MYNN MYNN RUC 

• Simulations run during 2019 HWT Spring Experiment at OU-
CAPS; 20 forecasts in total; 60 hours long, initiated at 00 UTC 



Method for Object-Based Diagnostic Evaluation (MODE) 

 
 

1. Identify objects in forecast and 
observed fields.  

2. Identify various object 
attributes for each object, such 
as location and size. 

3. Match the forecast and 
observed cloud objects. 

4. Output attributes for individual 
objects, such as location and 
size, and matched object pairs, 
such as the distance between 
object centers, ratio of object 
sizes, and overall interest score 
describing the “goodness” of 
the match for assessment. 



Interest Scores: similarity between matching forecast and observation MODE objects  
 
 

Object Pair Attribute User-Defined Weight (%) Description 

centroid_dist 4 (25.0) Distance between objects’ “center of mass” 

boundary_dist 3 (18.75) Minimum distance between the objects 

convex_hull_dist 1 (6.25) Minimum distance between the polygons 
surrounding the objects 

angle_diff 1 (6.25) Orientation angle difference 

area_ratio 4 (25.0) Ratio of the forecast and observation objects’ 
areas (or its reciprocal, whichever yields a lower 
value) 

int_area_ratio 3 (18.75) Ratio of the objects' intersection area to the 
lesser of the observation or forecast area 
(whichever yields a lower value) 

Method for Object-Based Diagnostic Evaluation (MODE) 



Method for Object-Based Diagnostic Evaluation (MODE) 

Clusters: one or more observed 
objects matched with one or 
more forecast objects  

• Must have an interest score > 
0.65 to be used in our study 

• Useful when analyzing matched 
object pairs, as otherwise 
smaller objects might not have 
a match and skew statistics 

• Examples: 

• Gray objects over Nevada 

• Green objects over Ontario, 
Canada 

 



Methodology 

1. Object-based analysis 
 

Object-based Threat Score (OTS) : 

OTS= 
1
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Af and Ao : Area of all forecasted and observed objects. 
P : number of matched simulated and observation object pairs 
Ip : interest score between the matched simulated and 
observation object 

af
p

and ao
p

 : areas of the forecast and observation objects in the 

matched pair 

 

2. Pixel-based analysis 
 

Mean Absolute Error (MAE): MAE=
1
N
 Fi − Oi

N
i=1   

 

Mean Bias Error (MBE): MBE = 
1
N
  Fi − Oi
N
i=1  

F  and O : forecast and observation BTs 



Object-Based Threat Score 

• Control has the highest 
average OTS. 

• MP-MG has the lowest 
average OTS. 

• LSM-RUC_SFC-MYNN has 
the steepest decline in 
OTS by forecast hour. 
• Due to increased 

number of objects 

• Parameterization 
changes have a neutral to 
positive impact on OTS in 
early FHs compared to 
Control. 



Pixel-based MAE and MBE 

• MP-MG highest MAE, Control lowest. 
• MP-MG difference from Control statistically 

significant. 
• MP-NSSL next highest MAE. 

• Diurnal cycle in model accuracy 
• Opposite of OTS (MAE high when OTS low) 
• Centroid distance removed for MAE. 

• Changing microphysics scheme has largest 
impact on MBE (and MAE) 
• MP-MG low bias in object BTs 
• MP-NSSL has a high bias in object BTs. 
• MBE is correlated with an increased number 

of forecast object grid points compared to 
the observation object. 



4-h HRRR from 1800 UTC on 20150818 GOES from 2200 UTC on 20150818 

• Summer Example:  

Forecast hours 0-24 

from HRRR 

initializations from 

August 1-31, 2015 

2-h HRRR from 2100 UTC on 20160122 GOES from 2300 UTC on 20160122 

•  Winter Example:  

Forecast hours 0-24 

from HRRR 

initializations from 

January 1-31, 2016 

Satellite-Based Verification of the HRRR Model 



• MODE identifies more cloud 

objects during August 

• Average cloud object is 

smaller (larger) during 

August (January) 

• Diurnal cycle is much larger 

during August 

• Minimum (maximum) 

near 12 UTC (20 UTC) 

Number of MODE Objects – Function of Time of Day 



• Too many forecast cloud 

objects during August for 

forecast hours 0-1 

• Indicates cloud objects 

are too small in HRRR 

initializations 

• More observed cloud objects 

than HRRR forecast objects 

overall 

• Steady drift toward fewer 

forecast cloud objects during 

January 

Number of MODE Objects – Function of Forecast Hour 
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Thank you for your attention! 


