

Gro sou nea neight rize valie at 20200 rite 500 hPa F120 and verification Heights

÷ờ́s

औ

K

Outline

- Background
- Objectives

ž

औ

ĸ

四日

 \mathbb{A}

512

- Data & Methods
 - Case Studies
- Link to Historical Composites
- Summary
- Future Work
 - References

Background

- While forecast skill continues to improve with model upgrades, there are still occasional periods where the forecast skill is significantly reduced, especially on regional scales.
- Regional sector low-skill events were categorized based on 120-h 500-hPa height anomaly correlation coefficient (ACC) and root mean square error (RMSE) and diagnosed to determine causes of operational Global Forecast System (GFS) forecast error since June 2019.
- For this study, 5-day ACC and RMSE were calculated using the most recent 00Z initialization date in the GFS archive for each regional sector.

ž

औ

 \approx

明

Background

The regional sectors included: Eastern North America Western North America North America in general Eastern Pacific Western Pacific Pacific North America Central Asia Europe Atlantic Polar European domain specified by Rodwell et al. (2013)

NATIONAL WEATHER SERVICE

ž

औ

 \approx

四

 \mathbb{A}

212

Objectives

- Evaluate GFSv15 00Z 120-h 500-hPa low-skill events by identifying the synoptic feature(s)/process(es) that may have contributed to the reduction in forecast skill
 - Identify common patterns that are conductive to low-skill forecasts
 - Apply knowledge of common patterns/processes to improve model and to mitigate future low-skill events
 - Validate low-skill composite work with real-time cases

ž

R

哭

Data & Methods

- GFSv15 6-hourly 0 to 5-day 500-hPa forecasts initialized at 00Z
- Associated GFSv15 model analysis/verification
- Evaluated low-skill events by first identifying large errors/pattern differences in the 5-day 500-hPa forecast
- Errors were then traced back in time to their original source region
- These source regions were then compared to a previous study that utilized 15 years of GFSv15 forecasts to composite all identified low-skill cases (ACC≤0.5 and RMSE≥60 meters)

Low-Skill Event Criteria

- ACC<0.5 and RMSE>60 meters
- {ACC<0.5 and RMSE<60 meters}
- {ACC<0.6 and RMSE>60 meters}

Building a Weather-Ready Nation // 6

NATIONAL WEATHER SERVICE

51.50

ž

औ

x

四

• June 13, 2020 00Z (ACC<0.6 and RMSE>60 m)

212

औ

K

INI.

512

Nov. 23, 2019 00Z Low-Skill Case

 5-day GFSv15 forecast initialized on Nov. 18 00Z and valid Nov. 23, 2019 00Z for the Eastern North America (ENA) sector was associated with an ACC<0.5 and RMSE>60 m

GFS 500 hPa Height F 120 Valid at 2019112300

500 hPa F120 and Verification Heights

Black contours: GFS Analysis Color shading: Forecast minus analysis Red contours: 120 h Forecast Trough/pattern errors over Eastern North America (trough was too slow in forecast)

NATIONAL WEATHER SERVICE

51 23

GFS 500 hPa Height F 072 Valid at 2019112100

500 hPa F072 and Verification Heights

Black contours: GFS Analysis Color shading: Forecast minus analysis Red contours: 72 h Forecast Errors traced back to a cutoff low over CA & were associated with the trough crossing the Rocky Mountains

NATIONAL WEATHER SERVICE

512

500 hPa F048 and Verification Heights

Black contours: GFS Analysis Color shading: Forecast minus analysis Red contours: 48 h Forecast Errors were traced back further to ridge building in the Pacific

NATIONAL WEATHER SERVICE

512

• June 13, 2020 00Z (ACC<0.6 and RMSE>60 m)

 $\mathbf{\Lambda}$

212

GFS 500 hPa Height F 120 Valid at 2020012100

500 hPa F120 and Verification Heights

Black contours: GFS Analysis Color shading: Forecast minus analysis Red contours: 120 h Forecast

Trough errors over Eastern North America

NATIONAL WEATHER SERVICE

51.50

GFS 500 hPa Height F 006 Valid at 2020011606

500 hPa F006 and Verification Heights

Black contours: GFS Analysis Color shading: Forecast minus analysis Red contours: 6 h Forecast Error source region in Central Pacific associated with atmospheric river/ridge

NATIONAL WEATHER SERVICE

512

Black contours: GFS Analysis Color contours: 500-hPa height error Color fill: 0-6 h Precip

Error source region in Central Pacific associated with atmospheric river/ridge

NATIONAL WEATHER SERVICE

ž

औ

 \approx

四

 \square

51 23 21 23

NATIONAL WEATHER SERVICE

औ

K

INI.

512

March 5, 2020 00Z Low-Skill Case

 5-day GFSv15 forecast initialized on Feb. 29 00Z and valid March 5, 2020 00Z for the Eastern North America (ENA) sector was associated with an ACC<0.5 and RMSE>60 m

NATIONAL WEATHER SERVICE

GFS 500 hPa Height F 120 Valid at 2020030500

500 hPa F120 and Verification Heights

Black contours: GFS Analysis Color shading: Forecast minus analysis Red contours: 120 h Forecast Incorrectly placed trough over ENA, leading to downstream pattern errors

NATIONAL WEATHER SERVICE

51.50

GFS 500 hPa Height F 066 Valid at 2020030218

500 hPa F066 and Verification Heights

Black contours: GFS Analysis Color shading: Forecast minus analysis Red contours: 66 h Forecast

Forecast errors traced back to a cutoff near CA

NATIONAL WEATHER SERVICE

51.50

GFS 500 hPa Height F 024 Valid at 2020030100

500 hPa F024 and Verification Heights

Black contours: GFS Analysis Color shading: Forecast minus analysis Red contours: 24 h Forecast

Forecast errors also traced back to ridge building in the Pacific

NATIONAL WEATHER SERVICE

512

NATIONAL WEATHER SERVICE

Ä

औ

K

512

June 13, 2020 00Z Low-Skill Case

 5-day GFSv15 forecast initialized on June 8 00Z and valid June 13, 2020 00Z for the Eastern North America (ENA) sector was associated with an ACC<0.6 and RMSE>60 m

NATIONAL WEATHER SERVICE

GFS 500 hPa Height F 120 Valid at 2020061300

500 hPa F120 and Verification Heights

Black contours: GFS Analysis Color shading: Forecast minus analysis Red contours: 120 h Forecast

Trough errors over Eastern North America

NATIONAL WEATHER SERVICE

51.50

GFS 500 hPa Height F 024 Valid at 2020060900

500 hPa F024 and Verification Heights

Black contours: GFS Analysis Color shading: Forecast minus analysis Red contours: 24 h Forecast

Errors associated with trough crossing the Rocky Mountains

NATIONAL WEATHER SERVICE

51.50

Eastern North America Low-Skill Case Studies

 These ENA low-skill events had very similar characteristics such as errors with trough progression over the Rocky Mountains, cutoff features rejoining the synoptic flow, and atmospheric river/ridge building. It was also found that these recent events had similar characteristics to past cases when error source regions were compared to a previous study that utilized 15 years of GFSv15 forecasts to composite all identified low-skill cases with ACC ≤ 0.5 and RMSE \geq 60 meters (next section).

्रौ

K

DOL

 $\mathbf{\Lambda}$

51.50

 By linking current events to a previous composite study, it was found that operational GFS forecasts produced errors through similar processes.

Eastern North America Processes

- Trough propagation across the Rocky Mountains
- Cutoff lows rejoining the synoptic flow
- Ridge building in the Pacific
 NATIONAL WEATHER SERVICE

Building a Weather-Ready Nation // 26

212

ž

औ

x

TOU

GFS 500 hPa Height F 000 Valid at 2019111800

Black contours: GFS Forecast Color shading: 500-hPa height anomaly (m)

Source region in GFSv15 forecast showed similar pattern as in Q3 ENA composite

NATIONAL WEATHER SERVICE

512

Black contours: GFS Forecast Color shading: 500-hPa height anomaly (m)

Source region in GFSv15 forecast showed similar pattern as in Q3 ENA composite

NATIONAL WEATHER SERVICE

GFS 500 hPa Height F 000 Valid at 2020011600 60E 120E 30E 150E 180 30W 150W

90W

120W

-180

Black contours: GFS Forecast Color shading: 500-hPa height anomaly (m)

-360

-300

-240

Source region showed similar pattern as in Q4 ENA composite, highlighting atmospheric rivers & Pacific ridge building as likely issues contributing to low-skill forecasts
NATIONAL WEATHER SERVICE
Building a V

212

Building a Weather-Ready Nation // 29

60

120 180

60W

240

300 360

Black contours: GFS Forecast Color shading: 500-hPa height anomaly (m)

Source region in GFSv15 forecast showed similar pattern as in Q4 ENA composite

NATIONAL WEATHER SERVICE

Building a Weather-Ready Nation // 30

60E

60W

240

120 180 30E

30W

300

360

Summary

- Source region comparison with a previous composite study identified that GFSv15 forecasts produced errors through similar processes.
- Low-skill forecasts in the ENA sector displayed similar characteristics if a trough propagated across the Rocky Mountains, cutoff lows tried to rejoin the synoptic flow, and/or ridge building occurred in the Pacific.

ž

औ

R

DOL

 $\mathbf{\Lambda}$

51.50

Future Work

- Continue monitoring/evaluating low-skill events in GFSv15 to increase knowledge of causes of low-skill forecasts
- Further investigate source region similarities for other regional sectors
- Diagnose 144-h (6-day) low-skill cases with regional ACC ≤ 0.4 and RMSE ≥ 60 meters (Rodwell et al. (2013) criteria)
- Utilize same methodology to investigate GFSv16 low-skill forecasts

ž

ज़ौ

ĸ

四日

References

 Rodwell, M. J., and Coauthors, 2013: Characteristics of occasional poor medium-range weather forecasts for Europe. *Bull. Amer. Meteor. Soc*, 94, 1393–1405, <u>https://doi.org/10.1175/BAMS-D-12-00099.1</u>.

Shannon Shields I.M. Systems Group, Inc. Environmental Modeling Center Shannon.Shields@noaa.gov

ž

औ

K

DOL