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A 20-year Journey 
of Forecast Verification Research



The Funds: Murphy's Law 
Verification: process which compares forecast with obs

Why verify? 
• Administrative: monitor forecast, compare different model versions 
• Scientific: identify model weaknesses, improve model physics 
• Economic: guide decisions of forecast end-users

Verification measures the quality of the forecast (as opposed to value and evaluation). 
Several attributes of the quality: bias, accuracy, association, skill ... Scores provide a summary 
measure of these attributes (e.g. ME describes the bias, MSE measures the accuracy, corr
coefficient measure linear association, ... ). 

Murphy (1993) What is a good forecast? An essay on the nature of goodness in weather 
forecasting. Murphy (1991) Forecast verification: Its complexity and dimensionality;
Murphy and Winkler (1987): A general framework for forecast verification.



The Funds: joint distribution
Verification is intrinsically a statistical problem: the 
forecast-observation relationship is fully described 
by their joint distribution 
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A 20-year journey of verification research

• Wilks (1995), (2006), (2011), (2019)
• Jolliffe and Stephenson (2003), (2011)

• Jan 2003 – present: the 
WWRP/WGNE Joint 
Working Group on Forecast 
Verification Research 
(JWGFVR)



• 30 July – 1 Aug 2002, Boulder: “Making Verification More Meaningful” (Barb Brown).
• 15-17 Sept 2004, Montreal: 2nd International Verification Workshop (Laurie Wilson)
• 31 Jan – 2 Feb 2007, Reading: 3rd International Verification Workshop & Tutorials (Anna Ghelli) 

https://www.ecmwf.int/en/learning/workshops-and-seminars/past-workshops/2007-international-
verification-methods
Ebert and Ghelli (2008) ed. Met Apps Special Issue; 
Casati et al (2008) review article

• 4 -10 June 2009, Helsinki: 4th International Verification Workshop & Tutorials (Pertti Nurmi) 
https://space.fmi.fi/Verification2009/

• 1-7 Dec 2011, Melbourne: 5th International Verification Workshop & Tutorials (Beth Ebert)
Ebert et al (2013) review article

• 13-19 March 2014, New Delhi: 6th International Verification Workshop & Tutorials (Raghu Ashrit)
• 3-11 May 2017, Berlin: 7th International Verification Workshop & Tutorials (Martin Goeber)

https://www.7thverificationworkshop.de
Dorninger et al (2018) ed. Met Zet special issue; 
Dorninger et al (2020) ed. Met Apps special issue.

• 9-20 November 2020, Online International Verification Method Workshop (Barbara Casati)

Verification Workshops

https://www.ecmwf.int/en/learning/workshops-and-seminars/past-workshops/2007-international-verification-methods
https://space.fmi.fi/Verification2009/
https://www.7thverificationworkshop.de/


Why do we want to verify?
E.Ebert (2008): “Forecast is like an experiment – given a set of conditions one makes an 
hypothesis that a certain outcome will occur. The experiment is not completed until its outcome 
is determined! This is the act of verification: determining whether the forecast was successful”

=> Verification has become an integral part of the forecasting process.

Murphy (1993) verification purposes:
• Administrative: monitor forecast, compare different model versions 
• Scientific: identify model weaknesses, improve model physics 
• Economic: guide decisions of forecast end-users

=> Jolliffe and Stephenson (2003): The scope of verification is informative: enhance understanding 
on the forecast capabilities, gain knowledge on the forecast performance.

=> Verification: ultimate goal is to use the gained information for improvements! 
• Upstream = Enhance understanding for guiding new NWP developments/improvements.
• Downstream = gain knowledge for an informed and better use of forecast products. 



Which score? Which method?
1. Graphical summary (scatter-plot, qq-plot, … ) 
2. Continuous scores (MSE,correlation, … ) 
3. Categorical scores (FBI,HSS,PC, … ). 
4. Probabilistic scores (Brier,CRPS, … ).
5. Extremes (EDI,SEDI)

6. Spatial methods: Scale-separation; 
Neighbourhood; Field-deformation; Feature-
based; Distance metrics 
7. SEEPS,Generalized Discrimination Score, 
Minimum Spanning Tree, …

There is no single technique which fully describes the complex observation-forecast 
relationship, no single score can provide a complete picture: explore!!!
Almost always we need a portfolio of statistics … the more the merrier :o)

Key Q1: what do we wish to know from our verification ? 
(end-user / verification purpose / questions addressed / attributes of interest)

Key Q2: What are the (statistical) characteristics 
of the variable and forecast verified? 

Key Q3: What are the available observations? 



Key factors to define the verification strategy

Purpose of the 
verification

Forecast 
characteristics

Available 
observations

Variable of 
interest



Key factors to define the verification strategy

Purpose of the 
verification

Forecast 
characteristics

Available 
observations

Variable of 
interest

• Summary performance measures for monitoring NWP improvements, comparing 
competing forecasting systems => Confidence Intervals (Mason 2008, Jolliffe 2007)

• Selecting, clustering, blending multi-model ensembles / multiple NWP products. 

• Physically meaningful diagnostics for model developers. 

• The quest for model systematic errors: post-processing, downscaling and bias-
correction of NWP model outputs. 

• Evaluation of the added value of enhanced resolution models => spatial methods

• Robust and informative metrics for extremes and high impact weather. 

• User-oriented indices to help planning response to weather conditions: impact and 
adaptation strategy. 
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• Summary performance measures for monitoring NWP improvements, comparing 
competing forecasting systems => Confidence Intervals (Mason 2008, Jolliffe 2007)

• Selecting, clustering, blending multi-model ensembles / multiple NWP products. 

• Physically meaningful diagnostics for model developers. 

• The quest for model systematic errors: post-processing, downscaling and bias-
correction of NWP model outputs. 

• Evaluation of the added value of enhanced resolution models => spatial methods

• Robust and informative metrics for extremes and high impact weather. 

• User-oriented indices to help planning response to weather conditions: impact and 
adaptation strategy. 

Advanced forecast verification end-users: hydrology, 
agriculture, energy sector. Transport: road conditions, air-
transport, navigation (e.g. in sea-ice infested waters). Urban 
modeling (e.g. increasing heat islands with climate change) to 
enable better planning of urban infrastructure.

The modellers and forecasters: a very special class of users, 
since they are upstream in the science-to-services value chain 
(as opposed to the previous users, which are downstream in 
the chain).
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Key factors to define the verification strategy

Purpose of the 
verification

Forecast 
characteristics

Available 
observations

Variable of 
interest

Increasing complexity and dimensionality of NWP: ensembles and higher resolution models; spatial and time scales:  
from short-medium to long range, monthly to seasonal, 

decadal and climate => S2S,S2D, Climate

From NWP to Earth System Models: surface component, land & vegetation, 
cryosphere (snow and glaciers), sea-ice and ocean (tides and waves, coastal erosion), 
hydrology (run-off, rivers), troposphere to stratosphere, chemical and aerosol component, urban …



Key factors to define the verification strategy

Purpose of the 
verification

Forecast 
characteristics

Available 
observations

Variable of 
interest

Enhanced station networks
Radars and satellite products

New sensors: fluxes, clouds
and precip microphysics, …

New observations: 
crowdsourcing and citizen 
science (public) initiatives 

End-users: transport: fog and visibility, icing, 
sea-ice pressure; agriculture: cold/warm 
degree days; infrastructure: erosion; … 

Scientific communities: sea-ice and ocean (e.g. 
salinity, wave height); surface: soil moisture, 
snow depth; hydrology: run-off and spring 
flood; 

Multiple sensors and 
observatories:
variable interactions, 
physical processes.



Spatial verification methods 
• Account for coherent spatial structure and the presence of features 
• Aim to provide information on error in physical terms (meaningful 

verification): e.g.  assess scale structure and displacement error 
(separately from intensity error) 

• Account for small time-space uncertainties (avoid double-penalty issue) 

The origins: Evaluation of the 
added value of enhanced 
resolution in QPF: CRA (Ebert and 
McBride, 2000; Grams et al 2006); 
IS (Casati et al 2004); FSS 
(Roberts and Lean 2008), MODE 
(Brown et al, 2004; Davis et al, 
2006); SAL (Wernli, 2006); DAS 
(Keil and Craig, 2008) ...  

Observed Forecast

observation forecast



Spatial verification methods Inter-Comparisons

• Spatial Verification Inter-
Comparison Project (ICP) 
Gilleland et al (2010), BAMS 

• Mesoscale Verification 
Intercomparison in complex 
Terrain (MesoVICT)   
Dorninger et al (2018), BAMS

Analyse the behaviour and classify the 
spatial methods: provide guidance

http://www.ral.ucar.edu/projects/icp
Includes an impressive list of references, 
more than 200 peer-review articles. 

Open source community verification tools: 
R packages, MET and METplus

http://www.ral.ucar.edu/projects/icp


From Buschow and Friederichs (2020) QJRMS, 
DTCWT versus DWT: characterize orientation angle 
and anisotropy, further than the spatial scale.

The evolution of spatial verification methods 

From Casati et al (2004) use Discrete Wavelet 
Transform with Haar wavelets -> “bloky” features

One example, 
from the scale separation techniques:
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Sea-ice verification: distance and areal metrics

Sea ice edge:
Melsom et al (2019), Zampieri (2018), inter-comparisons
Goessling and Jung (2018) spatial probabitlity score (SPS)
Goessling et al (2016) integrated ice edge error (IIEE)
Dukhovskoy et al (2015), mean distances and ModHausDist
Heinrichs et al (2006), Frechet distance

Linear Kinematik Features:
Mohammadi-Aragh et al (2020) 
multiscale directional analysis
Linow and Dierking (2017) 
Object-based detection of LKF

Image courtesy of H.Goessling, B.Niraula

Several products from satellites => gridded observations!
Several attributes: sea ice concentration, thickness, pressure,  …



Metaverification
Analyse and challenge existing verification scores, to better understand strengths and limits of 
each verification measure. Often leads to the development of new scores.

Recent progress gravitate mostly around ensembles and prob forecasts verification: 
• Brier and CRPS -> binning and sample size (Ferro 2007, Ferro et al 2008, Stephenson et al 2008)
• Rank histogram -> binning and sample size (Candille and Talagrand, 2005) 
• property -> Broker and Smith (2007), Gneiting and Raftery (2007)
• hedging: property equality consistency -> Jolliffe (2008)
• ETS is not equitable! -> Hogan et al (2010)
• Rodwell et al (2010) introduce Stable Equitable Error in 

Probability Space (SEEPS)

Ensembles: CRPS most accepted summary measure, 
along with Reliability diagram and ROC curve (discrimination); 
• Minimum Spanning Tree (Smith and Hansen, 2004; Wilks 2004); 
• Discrimination Generalized Score (Weigel and Mason, 2011; Mason and Weigel, 2009).



Rodwell et al (2010), SEEPS
Here the aim is to develop a new score that concisely 
quantifies NWP performance in the prediction of 
precipitation and steers development in the correct 
direction. The desirable attributes of such a score can be 
summarized as follows.

(a) Monitoring Progress.

• A single score should be sought that assesses forecast 
skill for dry weather and precipitation quantity.

• Verification against point observations is required in 
order to permit continuous monitoring of a system 
with resolution increasing with time, and to satisfy the 
typical user interested in a small geographic area.

• To detect performance changes, sensitivity to sampling 
uncertainty should be minimized, while maintaining 
the ability to differentiate between ‘good’ and ‘bad’ 
forecasts.

• For area and temporal averages to be meaningful, it 
should be possible to aggregate scores from different 
climate regions and different times of the year.

(b) Aiding decision-making.

• To facilitate the identification of model error, it should 
be possible to plot a map of scores for a single 
forecast.

• A score should encourage developments that permit a 
forecast system to predict the full range of possible 
outcomes.

• A better score should indicate a ‘better forecast 
system’.

Introduction: clearly define the desired 
characteristics of the sought verification 
measure:
1. Single summary measure
2. Use station observations
3. Accounts for local climatology
4. Meaningful geographical aggregation
5. Deals with precipitation mix distribution 

(dry & precip values)
6. Small sensitivity to sample uncertainty
7. Discrimination 
8. Refinement
9. Proper and equitable 



Rodwell et al (2010), SEEPS
Nicely explain the equitability constraint (Gandin and Murphy 1992, Gerrity 
1992), build step by step score with desired properties.
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1. Write the multi-categorical 
score as sum of joint probabilities 
[pi,j ] weighted by elements of a 
scoring matrix [si,j ]

2. Apply equitability constraints + symmetry

Perfect
Constant = 1
Constant = 2

symmetry

3. Find scoring matrix 
for 2x2 equitable 
symmetric score

.



Rodwell et al (2010), SEEPS1356 M. J. Rodwell et al.
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Figure 6. (a) Probability of a ‘dry’ day for January. (b) As (a) but for July. (c) Precipitation amount (in mm) marking the threshold between ‘light’ and
‘heavy’ precipitation for January. (d) As (c) but for July. By definition, ‘light precipitation’ occurs twice as often as ‘heavy precipitation’. Results are based
on 24 hour precipitation accumulations (1200 UTC–1200 UTC) from the 1980–2008 climatology.

attribute, since it should encourage developments that allow
the model (physics) to represent all categories, whatever
their climatological frequency.

For European stations, p1 is shown in Figure 6(a) and (b)
for January and July, respectively. As would be expected,
summer has more ‘dry’ days than winter. Northwestern
Europe has the fewest ‘dry’ days throughout the year.
Southern Europe in high summer (July and August) is
particularly arid with probabilities of a ‘dry’ day in excess
of 0.85. The threshold (in mm) between the ‘light’ and
‘heavy’ precipitation categories is shown in Figure 6(c)
and (d) for January and July, respectively. For Europe,
this threshold is generally between 3 and 10 mm, but can
be higher over mountainous regions such as the Alps.
Hence the category known as ‘heavy precipitation’ also
incorporates what may be considered to be more ‘moderate’
events.

By adapting to the underlying climate, SEEPS assesses the
pertinent aspects of the local weather. It is stable in the face
of sampling uncertainty (for fairly skilful forecasts) because
it satisfies a strong perfect forecast constraint. It is equitable
and, because it measures error in probability space, it is robust
with respect to the skewed distribution of precipitation.
SEEPS rewards systems that predict all categories and it
also inhibits hedging. SEEPS should, therefore, be useful
for monitoring performance and for guiding development
decisions.

8. Case studies: precipitation errors identified by SEEPS

Before attempting to diagnose trends in area-mean SEEPS
scores, it is worth demonstrating some of the precipitation
errors that the SEEPS score can identify. Improvements in
such errors will, therefore, be reflected in reductions in the
SEEPS score.

Figure 7(a) shows observed 24 hour accumulated
precipitation (in mm) on 16 December 2008, and Figure 7(b)
shows the corresponding D + 4 forecast precipitation.
(D + 4 is chosen because of ECMWF’s mandate to improve
medium-range forecasts). Notice that large parts of northern
Europe were predicted to have drizzle ahead of a frontal
system but were actually ‘dry’ (pink). In this case, recorded
values were 0.0 mm rather than 0.1 or 0.2 mm. Since this
region is generally wet in December (Figure 7(c)) and an
incorrect forecast for a likely category is strongly penalized,
the differences in precipitation categories (c.f. Figure 7(d)
and (e)) lead to relatively large SEEPS scores (Figure 7(f)).
Large SEEPS scores along the southern coast of France
(Figure 7(f)) reflect unpredicted heavy precipitation (c.f.
Figure 7(d) and (e)) associated with a Mediterranean
low-pressure system in this relatively dry climate region
(Figure 7(c)). These issues explain why the mean European
score for this forecast was one of the worst in 2008.

Note that the station scores in Figure 7(f) are plotted
with variable sizes to indicate their relative weight within an

Copyright c© 2010 Royal Meteorological Society Q. J. R. Meteorol. Soc. 136: 1344–1363 (2010)

Suitable for precipitation right skewed 
mix distribution (dry & precip values) 
=> probability space (robust and 
resistant)

Accounts for local climatology => 
Enables a meaningful geographical 
aggregation, avoid false skill issue 
(Hamill and Juras, 2006)



False skill

Hamill and Juras (2006): operational practice 
aggregate different locations. If climatologies of 
verified sample are different, part of the skill is due 
to reproducing the local climatologies. 

Ferro et al (2013) introduce a class of performance 
measures that are immune to spurious skill due to 
the presence of climate trends.

Sea-ice extent is characterized by
annual cycle + decreasing trend

False (trivial) skill can also be scored 
for variables affected by climate trends

Correlation is not sensitive to bias, is not the regression line 
slope, is artificially inflated for variables with a (climate) trend



Stephenson et al (2008): “The Extreme Dependency Score: a non-vanishing measure for 
forecasts of rare events”

Primo and Ghelli (2009), Ghelli and Primo 
(2009): the EDS is not proper and can be 
hedged by over-forecasting.

Hogan et al (2010): to address some of the 
shortcoming of the EDS they introduce the 
Symmertic EDS.

Ferro and Stephenson (2011): Revisit the 
properties of EDS and SEDS, introduce two 
new extremal dependence indices (EDI, SEDI). 

Challenging verification scores for extreme/rare events: 
from the Finley’s affair (Murphy, 1996) to the extreme 

dependence indices debate.

from traditional categorical scores to 
bivariate EVT association measures
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For rare/extreme events the base rate Ɛà0, 
then traditional scores degenerate to trivial non-
informative limits (e.g. zero)

Scores defined by logarithms: the asymptotic behaviour 
depends on the rate of convergence to zero (α)

Asymptotic behaviour of the joint 
(bivariate) distribution



Extreme Value Theory (EVT)

Challenges of Extremes = Rarity + Magnitude:
• small sample + large values = large uncertainties! Need 

robust and resistant statistical approaches + inference. 
• Scores exhibit statistics unstable behaviour, oversensitivity 

to bias, non-informative asymptotic limits.
Coles (2001) “An introduction of Statistical Modelling of 
Extreme Values”, Springer, 208 pp

The EDS is an asymptotic measure of extremal dependence 
which relies on Extreme Value Theory. 

Extreme Value Theory: branch of statistics which studies the 
properties of extreme values and enable to fit them with 
theoretical distributions.
Strengths: robustness (large values + small samples); 
extrapolation (infer behaviour of tails from few rare extremes); 
inference and uncertainty (intrinsic with MLE and pdf);        
non-stationary fit (evolution of extremes with Climate Change). 



Forecast verification activities
Overview of S2S verification methods and practices
Chapter 16: “Forecast verification for S2S time scales” by Caio A. S. Coelho, 
Barbara Brown, Laurie Wilson, Marion Mittermaier, Barbara Casati,
in “Sub-seasonal to seasonal prediction: the gap between weather and 
Climate, (2019)” AW. Robertson and F.Vitart ed., Elsevir

Proposed a verification framework for South American sub-seasonal 
precipitation predictions
Coelho, C. A. S.; M. A. F Firpo. F.  M. de Andrade (2018) A verification
framework for South American sub-seasonal precipitation
predictions. Met.Zet. 27: 503-520.

Performed global precipitation hindcast quality assessment of all 
S2S project models
de Andrade, F.M., Coelho, C.A.S. & Cavalcanti, I.F.A. (2019) Global 
precipitation hindcast quality assessment of the Subseasonal to Seasonal 
(S2S) prediction project models. Climate Dynamics 52, 5451–5475. 

Caio Coelho
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Verification of HIW: 
• Increased use of spatial verification (e.g. MODE) 
• More frequent use of probabilistic verif. approaches
• Greater use of 3rd party observations, crowdsourcing: 

2nd International Verification Challenge

Beth Ebert
Chiara Marsigli



Challenges and new 
directions:

• The elephants in the verification room: 
observation uncertainty and representativeness 
=> exploit DA techniques

• New observations : spatial, 3d satellites, vertical 
profiles, mobile networks …

• physical processes and interactions: conditional, 
multi-variate statistics;

• error tracking (linkages, teleconnections) and 
causality.

• Methods tailored to different research and user 
communities: sea-ice, ocean, hydrology, urban …  

• Artificial Intelligence and Machine Learning: error detection, post-
processing (provided the sample size is large enough to avoid overfitting)



against obs

against analysis 
at obs location
against analysis

representativeness

sampling

Representativeness and observation uncertainty
… can dominate the forecast error …

Obs error: Bowler (2008), Candille
and Talagrand (2008), Ferro (2017). 

Systematic positive bias is 
reduced when correcting 

precipitation measurements

Image courtesy 
of T. Haiden



Process Diagnostics
• Aim: provide feedback on the 

physical nature of the forecast 
error.

• Haiden et al (2019) outline some 
strategies for process diagnostics.

• Processes: interactions between 
physical variables => conditional 
and multivariate 

obs=clear
fcst=clear

obs=cloudy
fcst=clear

obs=cloudy
fcst=cloudy

obs=clear
fcst=cloudy

Opportunities:
Testbed datasets (e.g. YOPPsiteMIP): paired obs-forecast multiple variables. 
ESM increasing complexity: CMIP, WGNE, GEWEX intercomparison projects

2m Temperature bias 
conditioned on cloud cover



This workshop

Your contribution is shaping the future: Thank you!

Online around-the-clock format: a paradigm change!
More than 300 registered participants, very high quality 
submissions (we had to increase the sessions)!! 

Highly international: winning institutions are 
Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), 
Servicio Meteorológico Nacional (Argentina), Nigerian Met Agency, 
further than CPTEC / INPE (Brazil), NCRMWF (India),
NOAA, ECCC, BoM, UK MetOffice, ECMWF. 

Outreach several new groups / scientific communities (s2s and climate, processes, polar and 
sea-ice, ocean ... ): two-way exchange between verification experts in multiple disciplines. 


