Huber loss as a scoring function

Rob Taggart, Bureau of Meteorology, Sydney

Harry Jack, Deryn Griffiths, Michael Foley, Nicholas Loveday

19 November 2020

Huber loss as a scoring function: Outline

1. Motivation

Applications of Huber loss

- 2. Verification with contaminated observations
- **3.** Huber loss targets the *Huber mean*, which is a point summary of the centre of a distribution that has appealing properties
- 4. Huber mean arises naturally in optimal decision rules

See [Taggart 2020] for details and generalisations.

Contact: robert.taggart@bom.gov.au

Motivation

Asked to assess quality of competing point forecasts for temperature
Service not clearly defined (no directive in terms of a scoring function to minimise, or specific functional to target; diverse user group)

Two initial candidates:

Squared error scoring function

$$S(x,y) = (x-y)^2$$

Absolute error scoring function

$$S(x,y) = |x-y|$$

Here x is a point forecast and y is the verifying observation.

Subjective assessment of the cost of errors

Which error sequence is better?

Error sequence	RMSE	MAE
$\overline{A = (1, 1, 1, 1, 1)}$	1.0	1.0
B = (0, 0, 0, 0, 5)	2.2	1.0

We prefer A and hence RMSE in this example

Which error sequence is better?

Error sequence	RMSE	MAE
C = (22, 0)	15.6	11.0
D = (21, 5)	15.3	13.0

We prefer C and hence MAE in this example

What about sensitivity to contaminated observations?

Robust verification: example

System A: true errors $\sim \mathcal{N}(0,1)$ (no bias)

System B: true errors $\sim \mathcal{N}(0.5, 1)$ (over forecast bias)

Take a random sample of two years of daily forecast cases

Null hypothesis: "System A is no better than System B" Alternative hypothesis: "System A is better than System B"

Likelihood that null hypothesis is rejected (at 5% significance level):

Scoring function	Likelihood based on true errors
Squared error scoring function	92%
Absolute error scoring function	90%

But now suppose that some observations are contaminated:

> 3% chance of a +5 measurement spike

Likelihood that null hypothesis is rejected (at 5% significance level):

Scoring function	True errors	Contaminated errors
Squared error scoring function	92%	22%
Absolute error scoring function	90%	75%

A third candidate: Huber loss

Huber loss scoring function with tuning parameter *a*:

$$S_a(x,y) = egin{cases} rac{1}{2}(x-y)^2\,, & |x-y| \leq a\ a|x-y| - rac{1}{2}a^2\,, & |x-y| > a \end{cases}$$

- Quadratic penalty for small errors
- Linear penalty for large errors

Introduced by Peter Huber (1964) because it gives rise to the most robust (in a certain sense) estimator of the location parameter for contaminated normal distributions. Likelihood that null hypothesis is rejected (at 5% significance level):

Scoring function	True errors	Contaminated errors
Squared error scoring function	92%	22%
Absolute error scoring function	90%	75%
Huber loss scoring function $(a = 1.5)$	92%	70%

Tuning parameter a = 1.5 is suitable because

- most errors are between ± 1.5
- \blacktriangleright 1.5 is substantially less than the contaminating contribution +5

S(x, y) = |x - y| targets Median(F)

i.e., the optimal point forecast (for minimising expected score) is a median of one's predictive distribution F

Example: $F(t) = 1 - \exp(-t)$, $t \ge 0$

two dotted vertical line segments have equal length

$$S(x, y) = (x - y)^2$$
 targets Mean(F)

i.e., the optimal point forecast (for minimising expected score) is the mean of one's predictive distribution F

Example: $F(t) = 1 - \exp(-t)$, $t \ge 0$

two shaded regions have equal area

Huber loss $S_a(x, y)$ targets the Huber mean $H_a(F)$

i.e., the optimal point forecast (for minimising expected score) is a Huber mean $H_a(F)$ of one's predictive distribution F

Example: $F(t) = 1 - \exp(-t)$, $t \ge 0$

two shaded regions have equal area

Some basic properties of the Huber mean $H_a(F)$

- 1. $H_a(F)$ is the midpoint of the 'central interval' of F with length 2a
- **2.** $\operatorname{H}_{a}(F) \to \operatorname{Median}(F)$ as $a \downarrow 0$
- 3. $H_a(F) \to Mean(F)$ as $a \to \infty$

In summary:

- ▶ The Huber mean is an intermediary between the median and mean.
- The Huber mean incorporates more information about the centre of a distribution than the median.
- The Huber mean is not sensitive to behaviour at the tails of a distribution, unlike the mean.
- The Huber loss scoring function is consistent (or proper) for the Huber mean.

See [Taggart 2020] for details and further properties; also [Huber 1964] for the case of finite discrete distributions.

Theoretical properties [Taggart 2020]

1. Consistency: S is consistent for the Huber mean H_a if and only if

$$S(x,y) = \begin{cases} \phi(y) - \phi(x) + \phi'(x)(x-y), & |x-y| \le a \\ \phi(y) - \phi(y+a) + a\phi'(x), & x-y > a \\ \phi(y) - \phi(y-a) - a\phi'(x), & x-y < -a \end{cases}$$

where ϕ is convex.

- 2. Elicitability: The Huber mean is elicitable.
- 3. Mixture representation: Every consistent scoring function S for the Huber mean H_a can be expressed as an integral

$$S(x,y) = \int_{-\infty}^{\infty} S_{\theta,a}(x,y) \,\mathrm{d}M(\theta)$$

of elementary scoring functions

$$S_{\theta,a}(x,y) = \begin{cases} (1-\alpha)\min(\theta-y,a) & \text{if } y \le \theta < x\\ \alpha\min(y-\theta,a) & \text{if } x \le \theta < y\\ 0 & \text{otherwise} \,, \end{cases}$$

where *M* is a nonnegative measure satisfying $dM(\theta) = d\phi(\theta)$.

Elementary scoring functions for the Huber mean

Elementary scoring functions for the Huber mean measure the economic regret, relative to actions based on a perfect forecast, of investment decisions with fixed up-front costs and where both profits and losses are capped.

Example. Each Friday, Joe decides whether to sell ice creams at a sports stadium the following afternoon.

- ▶ Up-front cost if he sells ice creams: \$120 (includes stadium fee)
- Expected profit p from sales depends on daily maximum temperature y:

$$p = 40y - 680, \quad y \ge 17.$$

▶ *p* capped by cart storage capacity: $0 \le p \le 240$ Joe makes a profit if and only if $y > 20^{\circ}$ C.

Elementary scoring functions for the Huber mean

Decision rule: sell ice creams if and only if point forecast x for maximum temperature exceeds 20°C.

Which point forecast x?

Optimal decision rule: Sell ice creams if and only if $x > 20^{\circ}$ C, where

$$x = H_3(F)$$

and F is Joe's predictive distribution for daily maximum temperature.

Murphy diagrams

A Murphy diagram is a graph of the mean elementary score $\overline{S}_{\theta,a}$ versus θ . See [Ehm et. al., 2016] for the cases of the mean, median and quantiles.

Three forecast systems targeting the Huber mean H_3 for maximim temperature at Sydney Observatory Hill (July 2018 to June 2020).

Murphy diagrams

Joe's decision rule: act if and only if H_3 -forecast exceeds $\theta = 20^{\circ}C$. Joe should use BoM or OCF.

Wendy's decision rule: act if and only if H_3 -forecast exceeds $\theta = 33^{\circ}C$. Wendy should use BoM.

Murphy diagrams

Which forecast is best, on average, across all decision thresholds θ ?

Mean Huber loss score \bar{S}_3 is twice the area under the Murphy Diagram. BoM: $\bar{S}_3 = 1.001$ OCF: $\bar{S}_3 = 1.182$

Summary and references

- 1. Huber loss can be used as a robust scoring function.
- 2. The Huber mean is a good candidate statistic for summarising the centre of a distribution. It is an intermediary between the mean and median.
- **3.** The Huber mean (more generally, Huber functional) arises naturally in optimal decision making for investment problems with fixed up-front costs and a cap on profits and losses.

Selected references

Ehm, W., Gneiting, T., Jordan, A. and Krüger, F. (2016). *Of quantiles and expectiles: consistent scoring functions, choquet representations and forecast rankings*, J. R. Statist. Soc. B, 78, 505–562.

Gneiting, T. (2011). *Making and evaluating point forecasts*, Journal of the American Statistical Association, 106, 746–762.

Huber, P. (1964). *Robust estimation of a location parameter*, Annals of Mathematical Statistics, 35, 73–101.

Taggart, R. (2020). Point forecasting and forecast evaluation with generalised Huber loss, Bureau of Meteorology Research Series (to appear).