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Huber loss as a scoring function: Outline

1. Motivation
Applications of Huber loss
2. Verification with contaminated observations

3. Huber loss targets the Huber mean, which is a point summary of the
centre of a distribution that has appealing properties

4. Huber mean arises naturally in optimal decision rules

See [Taggart 2020] for details and generalisations.
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Motivation

P> Asked to assess quality of competing point forecasts for temperature
» Service not clearly defined (no directive in terms of a scoring function
to minimise, or specific functional to target; diverse user group)

Two initial candidates:

» Squared error scoring function

S(x,y) = (x —y)®
» Absolute error scoring function

S(x,y) = Ix—vl

Here x is a point forecast and y is the verifying observation.



Subjective assessment of the cost of errors

» Which error sequence is better?

Error sequence RMSE MAE

A=(1,1,1,1,1) 1.0 1.0
B =(0,0,0,0,5) 22 10

We prefer A and hence RMSE in this example

» Which error sequence is better?

Error sequence  RMSE MAE

C = (22,0) 156 11.0
D = (21,5) 153  13.0

We prefer C and hence MAE in this example

» What about sensitivity to contaminated observations?



Robust verification: example

System A: true errors ~ N(0, 1) System B: true errors ~ N(0.5,1)
(no bias) (over forecast bias)
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» Take a random sample of two years of daily forecast cases

» Null hypothesis: “System A is no better than System B”
Alternative hypothesis: “System A is better than System B”

Likelihood that null hypothesis is rejected (at 5% significance level):

Scoring function Likelihood based on true errors

Squared error scoring function 92%
Absolute error scoring function 90%




Robust verification: example

But now suppose that some observations are contaminated:

» 3% chance of a +5 measurement spike

Likelihood that null hypothesis is rejected (at 5% significance level):

Scoring function True errors  Contaminated errors

Squared error scoring function 92% 22%
Absolute error scoring function 90% 75%




A third candidate: Huber loss

Huber loss scoring function with tuning parameter a:

Tx—y)?, Ix—y|<a
ax —y|—3a%, [x—y|>a

53(X7Y) = {

» Quadratic penalty for small
errors
» Linear penalty for large errors

Introduced by Peter Huber (1964)
because it gives rise to the most
robust (in a certain sense) estimator
of the location parameter for

6 contaminated normal distributions.

error x-y




Robust verification: example continued

Likelihood that null hypothesis is rejected (at 5% significance level):

Scoring function True errors  Contaminated errors
Squared error scoring function 92% 22%
Absolute error scoring function 90% 75%
Huber loss scoring function (a = 1.5) 92% 70%

Tuning parameter a = 1.5 is suitable because

» most errors are between +1.5

» 1.5 is substantially less than the contaminating contribution +5



S(x,y) = |x — y| targets Median(F)

i.e., the optimal point forecast (for minimising expected score) is a median
of one’s predictive distribution F

Example: F(t) =1 —exp(—t), t >0
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» two dotted vertical line segments have equal length



S(x,y) = (x — y)? targets Mean(F)

i.e., the optimal point forecast (for minimising expected score) is the mean
of one’s predictive distribution F

Example: F(t) =1 —exp(—t), t >0
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» two shaded regions have equal area



Huber loss S,(x,y) targets the Huber mean H,(F)

i.e., the optimal point forecast (for minimising expected score) is a Huber
mean H,(F) of one's predictive distribution F

Example: F(t) =1 —exp(—t), t >0
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» two shaded regions have equal area



Median ... Huber mean ...

Mean
Example: F(t) =1 —exp(—t), t >0
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Median ... Huber mean ... Mean

Example: F(t) =1 —exp(—t), t >0

F(t)
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Median ... Huber mean ...

Example: F(t) =1 —exp(—t), t >0

Mean
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Median ... Huber mean ... Mean

Example: F(t) =1 —exp(—t), t >0
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Median ... Huber mean ... Mean

Example: F(t) =1 —exp(—t), t >0
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Some basic properties of the Huber mean H,(F)

1. H,(F) is the midpoint of the ‘central interval’ of F with length 2a
2. H,(F) — Median(F) as a0
3. Ho(F) — Mean(F) as a —» oo

In summary:
» The Huber mean is an intermediary between the median and mean.

» The Huber mean incorporates more information about the centre of a
distribution than the median.

» The Huber mean is not sensitive to behaviour at the tails of a
distribution, unlike the mean.

» The Huber loss scoring function is consistent (or proper) for the
Huber mean.

See [Taggart 2020] for details and further properties; also [Huber 1964] for
the case of finite discrete distributions.



Theoretical properties [Taggart 2020]

1. Consistency: S is consistent for the Huber mean H; if and only if

(y) —o(x) +¢'(x)(x—y), Ix—yl<a
S(Xv)/): ¢(Y)_¢(Y+a)+a¢/(x)’ X—y>a
o(y) —dly —a)—a¢'(x), x—-y<-a
where ¢ is convex.

2. Elicitability: The Huber mean is elicitable.

3. Mixture representation: Every consistent scoring function S for the
Huber mean H, can be expressed as an integral

St = [ Sualxy) M)
of elementary scoring functions

(1—a)min(f —y,a) ify <6<x
Sp.a(x,y) =< amin(y — 0, 3a) ifx<0<y

0 otherwise,

where M is a nonnegative measure satisfying dM(0) = d¢(8).



Elementary scoring functions for the Huber mean

Elementary scoring functions for the Huber mean
measure the economic regret, relative to actions based
on a perfect forecast, of investment decisions with fixed
up-front costs and where both profits and losses are
capped.

Example. Each Friday, Joe decides whether to sell ice creams at a sports
stadium the following afternoon.

» Up-front cost if he sells ice creams: $120 (includes stadium fee)

» Expected profit p from sales depends on daily maximum temperature

y:
p =40y — 680, y > 17.

» p capped by cart storage capacity: 0 < p < 240
Joe makes a profit if and only if y > 20°C.



Elementary scoring functions for the Huber mean

Decision rule: sell ice creams if and only if point forecast x for maximum
temperature exceeds 20°C.

Which point forecast x?

Do the maths. .. boils down to minimising the
elementary score S ,(x,y), where
> x is forecast maximum temperature
» y is the observed maximum temperature
> 0 =20°C
> a=3

Optimal decision rule: Sell ice creams if and only if x > 20°C, where
X = Hg(F)

and F is Joe's predictive distribution for daily maximum temperature.



Murphy diagrams
A Murphy diagram is a graph of the mean elementary score :99,3 versus 6.
See [Ehm et. al., 2016] for the cases of the mean, median and quantiles.

Three forecast systems targeting the Huber mean H3 for maximim
temperature at Sydney Observatory Hill (July 2018 to June 2020).
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Murphy diagrams

Joe’s decision rule: act if and only if Hz-forecast exceeds 6 = 20°C.
Joe should use BoM or OCF.

Wendy's decision rule: act if and only if Hs-forecast exceeds § = 33°C.
Wendy should use BoM.
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Murphy diagrams
Which forecast is best, on average, across all decision thresholds 67

Mean Huber loss score Ss is twice the area under the Murphy Diagram.
BoM: S3 = 1.001

OCF: 53 =1.182
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Summary and references

1. Huber loss can be used as a robust scoring function.

2. The Huber mean is a good candidate statistic for summarising the
centre of a distribution. It is an intermediary between the mean and
median.

3. The Huber mean (more generally, Huber functional) arises naturally
in optimal decision making for investment problems with fixed
up-front costs and a cap on profits and losses.
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