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Huber loss as a scoring function: Outline

1. Motivation

Applications of Huber loss

2. Verification with contaminated observations

3. Huber loss targets the Huber mean, which is a point summary of the
centre of a distribution that has appealing properties

4. Huber mean arises naturally in optimal decision rules

See [Taggart 2020] for details and generalisations.
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Motivation

I Asked to assess quality of competing point forecasts for temperature
I Service not clearly defined (no directive in terms of a scoring function

to minimise, or specific functional to target; diverse user group)

Two initial candidates:
I Squared error scoring function

S(x , y) = (x − y)2

I Absolute error scoring function

S(x , y) = |x − y |

Here x is a point forecast and y is the verifying observation.



Subjective assessment of the cost of errors
I Which error sequence is better?

Error sequence RMSE MAE
A = (1, 1, 1, 1, 1) 1.0 1.0
B = (0, 0, 0, 0, 5) 2.2 1.0

We prefer A and hence RMSE in this example
I Which error sequence is better?

Error sequence RMSE MAE
C = (22, 0) 15.6 11.0
D = (21, 5) 15.3 13.0

We prefer C and hence MAE in this example
I What about sensitivity to contaminated observations?



Robust verification: example
System A: true errors ∼ N (0, 1)
(no bias)
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System B: true errors ∼ N (0.5, 1)
(over forecast bias)
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I Take a random sample of two years of daily forecast cases
I Null hypothesis: “System A is no better than System B”

Alternative hypothesis: “System A is better than System B”

Likelihood that null hypothesis is rejected (at 5% significance level):

Scoring function Likelihood based on true errors
Squared error scoring function 92%
Absolute error scoring function 90%



Robust verification: example

But now suppose that some observations are contaminated:
I 3% chance of a +5 measurement spike

Likelihood that null hypothesis is rejected (at 5% significance level):

Scoring function True errors Contaminated errors
Squared error scoring function 92% 22%
Absolute error scoring function 90% 75%



A third candidate: Huber loss

Huber loss scoring function with tuning parameter a:

Sa(x , y) =
{

1
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I Quadratic penalty for small
errors

I Linear penalty for large errors

Introduced by Peter Huber (1964)
because it gives rise to the most
robust (in a certain sense) estimator
of the location parameter for
contaminated normal distributions.



Robust verification: example continued

Likelihood that null hypothesis is rejected (at 5% significance level):

Scoring function True errors Contaminated errors
Squared error scoring function 92% 22%
Absolute error scoring function 90% 75%
Huber loss scoring function (a = 1.5) 92% 70%

Tuning parameter a = 1.5 is suitable because
I most errors are between ±1.5
I 1.5 is substantially less than the contaminating contribution +5



S(x , y) = |x − y | targets Median(F )
i.e., the optimal point forecast (for minimising expected score) is a median
of one’s predictive distribution F

Example: F (t) = 1− exp(−t), t ≥ 0
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I two dotted vertical line segments have equal length



S(x , y) = (x − y)2 targets Mean(F )
i.e., the optimal point forecast (for minimising expected score) is the mean
of one’s predictive distribution F

Example: F (t) = 1− exp(−t), t ≥ 0

Mean(F)
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I two shaded regions have equal area



Huber loss Sa(x , y) targets the Huber mean Ha(F )
i.e., the optimal point forecast (for minimising expected score) is a Huber
mean Ha(F ) of one’s predictive distribution F

Example: F (t) = 1− exp(−t), t ≥ 0
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Median . . . Huber mean . . . Mean

Example: F (t) = 1− exp(−t), t ≥ 0
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Median . . . Huber mean . . . Mean

Example: F (t) = 1− exp(−t), t ≥ 0
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Median . . . Huber mean . . . Mean

Example: F (t) = 1− exp(−t), t ≥ 0
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Median . . . Huber mean . . . Mean

Example: F (t) = 1− exp(−t), t ≥ 0
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Median . . . Huber mean . . . Mean

Example: F (t) = 1− exp(−t), t ≥ 0
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Median . . . Huber mean . . . Mean

Example: F (t) = 1− exp(−t), t ≥ 0
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Median . . . Huber mean . . . Mean

Example: F (t) = 1− exp(−t), t ≥ 0
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Median . . . Huber mean . . . Mean

Example: F (t) = 1− exp(−t), t ≥ 0
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Some basic properties of the Huber mean Ha(F )
1. Ha(F ) is the midpoint of the ‘central interval’ of F with length 2a

2. Ha(F )→ Median(F ) as a ↓ 0

3. Ha(F )→ Mean(F ) as a→∞

In summary:
I The Huber mean is an intermediary between the median and mean.
I The Huber mean incorporates more information about the centre of a

distribution than the median.
I The Huber mean is not sensitive to behaviour at the tails of a

distribution, unlike the mean.
I The Huber loss scoring function is consistent (or proper) for the

Huber mean.

See [Taggart 2020] for details and further properties; also [Huber 1964] for
the case of finite discrete distributions.



Theoretical properties [Taggart 2020]
1. Consistency: S is consistent for the Huber mean Ha if and only if

S(x , y) =


φ(y)− φ(x) + φ′(x)(x − y) , |x − y | ≤ a
φ(y)− φ(y + a) + aφ′(x) , x − y > a
φ(y)− φ(y − a)− aφ′(x) , x − y < −a

where φ is convex.

2. Elicitability: The Huber mean is elicitable.

3. Mixture representation: Every consistent scoring function S for the
Huber mean Ha can be expressed as an integral

S(x , y) =
∫ ∞
−∞

Sθ,a(x , y) dM(θ)

of elementary scoring functions

Sθ,a(x , y) =


(1− α) min(θ − y , a) if y ≤ θ < x
αmin(y − θ, a) if x ≤ θ < y
0 otherwise ,

where M is a nonnegative measure satisfying dM(θ) = dφ(θ).



Elementary scoring functions for the Huber mean

Elementary scoring functions for the Huber mean
measure the economic regret, relative to actions based
on a perfect forecast, of investment decisions with fixed
up-front costs and where both profits and losses are
capped.

Example. Each Friday, Joe decides whether to sell ice creams at a sports
stadium the following afternoon.
I Up-front cost if he sells ice creams: $120 (includes stadium fee)
I Expected profit p from sales depends on daily maximum temperature

y :
p = 40y − 680, y ≥ 17.

I p capped by cart storage capacity: 0 ≤ p ≤ 240

Joe makes a profit if and only if y > 20◦C.



Elementary scoring functions for the Huber mean

Decision rule: sell ice creams if and only if point forecast x for maximum
temperature exceeds 20◦C.

Which point forecast x?
Do the maths. . . boils down to minimising the
elementary score Sθ,a(x , y), where
I x is forecast maximum temperature
I y is the observed maximum temperature
I θ = 20◦C
I a = 3

Optimal decision rule: Sell ice creams if and only if x > 20◦C, where

x = H3(F )

and F is Joe’s predictive distribution for daily maximum temperature.



Murphy diagrams
A Murphy diagram is a graph of the mean elementary score S̄θ,a versus θ.
See [Ehm et. al., 2016] for the cases of the mean, median and quantiles.

Three forecast systems targeting the Huber mean H3 for maximim
temperature at Sydney Observatory Hill (July 2018 to June 2020).
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Murphy diagrams
Joe’s decision rule: act if and only if H3-forecast exceeds θ = 20◦C.
Joe should use BoM or OCF.

Wendy’s decision rule: act if and only if H3-forecast exceeds θ = 33◦C.
Wendy should use BoM.
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Murphy diagrams
Which forecast is best, on average, across all decision thresholds θ?

Mean Huber loss score S̄3 is twice the area under the Murphy Diagram.
BoM: S̄3 = 1.001
OCF: S̄3 = 1.182

Area = 2S3

be
tte

r

0.00

0.05

0.10

0.15

0.20

10 20 30 40

parameter θ

m
ea

n 
el

em
en

ta
ry

 s
co

re



Summary and references
1. Huber loss can be used as a robust scoring function.

2. The Huber mean is a good candidate statistic for summarising the
centre of a distribution. It is an intermediary between the mean and
median.

3. The Huber mean (more generally, Huber functional) arises naturally
in optimal decision making for investment problems with fixed
up-front costs and a cap on profits and losses.
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