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A forecast 

To verify:  Chance of any rain 

  Possible rainfall range 



How should I measure my errors? 

I want my measure to be Proper (Consistent), unable to be Gamed 

• I want Forecasters to minimise their expected error by forecasting what 
they believe. 

• If forecasters predict something they don't believe, I want them to 
expect a worse error. 

 

E.g. "% within 5 mm" is not Proper for expected rainfall 

• Being confident of 0 mm, you are still better off to forecast 4.9 mm. 



For a forecast of "Chance of <an event>" 

• Brier Score is well known to be consistent 

 

If Observation, o, is 1 or 0 (event occurred or not) 

And Forecast, p, is in [0, 1] 

Then the Brier Score is (p – o)2 

 

• A standard decomposition to show Reliability and Resolution 



Chance of any rain Verification Results 



Chance of any rain Verification Results 

Showing 190 stations, Winter (wet season),  
Brier Score, Difference and Components 

Choose forecast source 

Choose area of interest 

Choose season 

Choose metric 



Chance of any rain Verification Results 

Lead Day 

Skill difference 
equivalent to one day 

No difference 

Brier Score 

Difference in 
Brier Score 

• Both better than climatology to Day 7 
• Difference not substantial 
• Difference not highly significant 
• Signal Days 2 to 7 suggests we rely on the pink 

forecast 
• Strong signal green better at Day 1 (tomorrow), 

of order less than one lead-day of skill 

Reliability 

Resolution 

Manual 
Automated 
Sample climatology 

Better Better 

Better 



Reliability 
In addition to the Reliability Component of the Brier Score, we create Reliability Diagrams 

Chance of at least 1mm Chance of at least 50 mm 

When bins have too few 

forecasts, Reliability Diagrams 

are noisy. 

The Reliability and Resolution 

components of the Brier Score 

are sensitive to the bins used. 

 
 
Frequency 
of event 
 
 

 
Frequency 
of forecast 
 

Forecast (binned) Forecast (binned) 



Example of Quantile Forecast 

To verify: Possible rainfall range 

First need definition:  Lower value (5mm) is median (50th percentile) 

 Upper value (10 mm) is 75th percentile. 



Initial efforts to assess percentiles 
- assessed reliability only, no measure of resolution 

This graph shows pink and 
green are under-forecasts 
at lead days 1 to 4. 



Initial efforts to assess percentiles 
- assessed reliability only, no measure of resolution 

This graph shows pink and 
green are under-forecasts 
at lead days 1 to 4. 

Manual 
Automated 

Ideal 

Under-forecast 

Over-forecast 



75th percentile – Reliability as a function of forecast value 

This graph shows that the green forecasts 
above 15 mm were likely to be too high. 

It is still a very coarse view. 

 

The forecasts have different 
characteristics.  

Which is better? 

Forecast (mm) 

Lead Day 2 
 
 
Frequency 
of obs > fcst 
 
 
 
 

 
 
Frequency 
of forecast 
 
 
 

Ideal 

Under-forecast 

Over-forecast 

Manual 
Automated 



Common error measures 

Root Mean Square Error 
• An error of 10 is considered 4 times as bad as an error of 5. 
• Very popular 

 
Mean Absolute Error 
• An error of 10 is considered twice as bad as an error of 5. 
• Used when you don't want sensitivity to large errors 

 
But what are they actually targeting? 
Are they relevant to rainfall forecasts (skewed distribution, bounded by zero)? 

 



Example Cumulative Density Function (the forecaster's belief) 
F(t) = Forecast probability {observing < t} 

(e.g. rainfall in mm) 

F(t) = Probability 
of observing < t 



Example Cumulative Density Function 
F(t) = Forecast probability {observing < t} 

 

Forecast Mean 
(pink areas are equal) 

Forecasting the Mean minimises the 
expected Square Error. 

 

 

Minimising MSE or RMSE targets the Mean 

 

𝑜𝑏𝑠 − 𝑓𝑐𝑠𝑡 2 



As it turns out… 

Forecasting the Median minimises 
the expected Absolute Error. 

 

 

Minimising MAE targets the Median 

Forecast Median 

 

𝑜𝑏𝑠 − 𝑓𝑐𝑠𝑡   if   𝑓𝑐𝑠𝑡 ≤ 𝑜𝑏𝑠 
(𝑓𝑐𝑠𝑡 − 𝑜𝑏𝑠)   if   𝑓𝑐𝑠𝑡 > 𝑜𝑏𝑠 



Example Cumulative Density Function 
F(t) = Forecast probability {observing < t} 

What error scoring function 
should we use when forecasting 
the 75th percentile?  

0.75 

Forecast 0.75 
quantile 



Quantile Scoring Function 

For a forecast of the 75th percentile of the forecast distribution, we can score the forecast with an 
error of  

 

0.75 𝑜𝑏𝑠 − 𝑓𝑐𝑠𝑡   if   𝑓𝑐𝑠𝑡 ≤ 𝑜𝑏𝑠 

0.25 (𝑓𝑐𝑠𝑡 − 𝑜𝑏𝑠)   if   𝑓𝑐𝑠𝑡 > 𝑜𝑏𝑠 

 

Minimising this error ensures we are targeting the 75th percentile. 

 

See abstract for formula generalised to any quantile. 

Reference:  Gneiting, J. Amer Statist Assoc. 2011, Making and evaluating point forecasts, 
https://www.tandfonline.com/doi/abs/10.1198/jasa.2011.r10138  

https://www.tandfonline.com/doi/abs/10.1198/jasa.2011.r10138


Quantile Score and Difference vs Lead Day  

Lead Day 

• Both better than climatology to Day 7 
• Difference not substantial 
• Suggests we can rely on the pink forecast 

One lead day of skill different 

No difference 

 
 
Mean 
Quantile 
Score 
 
 

 
 
Difference 
in 
Quantile 
Score 
 
 

One lead day of skill different 

Manual 
Automated 
Sample climatology 

Better 



Lesson learnt – do a better literature review 

Particularly Interesting and Useful references: 

Bentzien & Friederichs, QJRMS 2014, Decomposition and graphical portrayal of the quantile score, 
https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/qj.2284  

Technique for determining reliability and resolution components of quantile scoring 
function 

 

Dimitriadis, Gneiting & Jordan, 2020, Evaluating probabilistic classifiers: Reliability diagrams and score 
decompositions revisited, https://arxiv.org/pdf/2008.03033.pdf 

Technique that removes sensitivity to choice of bins.  
Reliability curve is forced to be non-decreasing via isotonic regression.  
Reliability and Resolution Components are more confidently meaningful. 

 

https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/qj.2284
https://arxiv.org/pdf/2008.03033.pdf


From Fig 1 of Dimitriadis et al. 
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Planned Adjustment to our Verification 

Add MSE (or RMSE) analysis of forecast Expected Precipitation 

Add Quantile Scoring Function analysis of forecast quantiles for Precipitation 

Explore using technique of Dimitriadis et al to explore Reliability and Resolution (for 

all forecasts). 



References 
Gneiting, International Journal of Forecasting 2011, Quantiles as optimal point forecasts,  

https://doi.org/10.1016/j.ijforecast.2009.12.015  

 

Geniting and Katzfuss, Annual Review of Stat. Appl. 2014, Probabilistic forecasting, 
https://doi.org/10.1146/annurev-statistics-062713-085831 

 

Already mentioned: 

Bentzien & Friederichs, QJRMS 2014, Decomposition and graphical portrayal of the quantile 

score, https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/qj.2284  

Dimitriadis, Gneiting & Jordan, 2020, Evaluating probabilistic classifiers: Reliability diagrams 

and score decompositions revisited, https://arxiv.org/pdf/2008.03033.pdf 

Gneiting, J. Amer Statist Assoc. 2011, Making and evaluating point forecasts, 

https://www.tandfonline.com/doi/abs/10.1198/jasa.2011.r10138 

https://doi.org/10.1016/j.ijforecast.2009.12.015
https://doi.org/10.1146/annurev-statistics-062713-085831
https://doi.org/10.1146/annurev-statistics-062713-085831
https://doi.org/10.1146/annurev-statistics-062713-085831
https://doi.org/10.1146/annurev-statistics-062713-085831
https://doi.org/10.1146/annurev-statistics-062713-085831
https://doi.org/10.1146/annurev-statistics-062713-085831
https://doi.org/10.1146/annurev-statistics-062713-085831
https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/qj.2284
https://arxiv.org/pdf/2008.03033.pdf
https://www.tandfonline.com/doi/abs/10.1198/jasa.2011.r10138


The Bureau of Meteorology issues various forecasts for daily rainfall including the mean, the median, other quantiles, and the chance of 
exceeding various thresholds.  

We verify the chance of exceeding a given threshold using the Brier Score. However, our initial attempts to assess forecasts such as the 
90th percentile of daily rainfall was very simply showing the proportion of times the observation exceeded the forecast. This showed some 
measure of the reliability of the forecasts but gave no overall measure of its skill. A climatological forecast would score perfectly on this 
measure.  

Recently, we learnt about consistent scoring functions for single value quantile forecasts. For forecast x predicting the α quantile of the 
forecast distribution, and observation y, we can score the forecast as follows 

 𝛼 𝑥 − 𝑦    if   𝑥 ≤ 𝑦 

(1 − 𝛼) 𝑥 − 𝑦    if   𝑥 > 𝑦  

For the median forecast, the score is essentially the mean absolute error.  

By introducing this score, we will be able to track improvement in forecasts of a particular quantile and to compare two forecasts of the 
same event in a meaningful way. To compare the whole forecast distribution, we use the (Continuous) Ranked Probability Score. However, 
verifying a point of the forecast probability distribution is important if that value is a prominent aspect of one's forecast service, or known 
to be used by a client for a particular decision.  

This talk will showcase techniques for verifying a rainfall probability distribution, including point values from the distribution, and discuss 
the decisions being informed by the verification.   

Abstract 


