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How this got started

O

e Murphy (1993)-relationship between quality and value

e Early 2000s

O Was a goal of POD=0.8, FAR=0.5 for tornado warnings reasonable?
o “With our current science, there’s no excuse for an FAR>0.25"

* More recent
O What happened with US tornado warning performance in 2012/3?




 Visualization of multiple aspects of forecast performance
can help in understanding of system

O Different diagrams emphasize/hide different things
O Choices reflect implicit statement of values

“The numbers have no way of speaking for themselves. We speak for
them. We imbue them with meaning.”-N. Silver, The Signal and the
Noise

O | live in the world of rare events and short-term forecasts

* Use toy models of forecasting to understand relationships

III

e Comparison to “real” forecasts



Long-term goals

O

e Create a simple model of forecast systems that we can
use to look at impacts of changes in any aspect

O Improving science

O Different user decision problems
O Probabilistic forecasts that can be thresholded




Exploit 2x2 Tables

Event
Y N
Forecast Y a b
N v d

POD=a/(a+c)

POFD=b/(b+d)
SR=1-FAR=b/(a+b)
DFR=c/(c+d)

Base rate=f=(a+c)/(a+b+c+d)

Quality Value

Event
Y N
Action? Y A B
N C D

» Misclassification Cost Ratio ()

] B—-D
o Actif p>a= (B—E))+(3_A)
. _ Cost(FA)
o Actifp>a= Cost(FA)+Cost(ME)




Modelling the Problem

O

 Signal Detection Theory [following Mason (1982)]

O Gaussian distributions for “yes” and “no” events, separated by d’

Ono

O Ratio of standard deviations (R) =
yes

O Local separation (d*) comes from z(POD)-z(POFD)
= If R=1, d*=d’ always

e f=base rate of event requiring decisions (needed to get all
elements of table)




Modelling the Problem

—No
—Yes

Areas under curves give f
Ratios of std devs give R




Basic diagrams today

O

» Relative operating characteristics (Mason 1982)
O PODvs. POFD
O No information on bias
O For rare events, real forecasts typically cluster in low POFD
O Also show z-transform diagram of POD and POFD

* Performance diagram (Roebber 2009)
O Reversed axes from precision-recall curve
O PODvs SR
O No information on correct forecasts of non-events
O More informative for rare events (Saito and Rehmsmeier 2015)

* Quality-decision threshold (new?)
O o of user for whom forecast is “preferred” vs. d*




Datasets

O

e Theoretical Gaussian distributions
O Focus on d’=1 with R=0.5, 1.0, 2.0

e US tornado warnings (Brooks and Correia 2018)

e Hidden slides

O Storm Prediction Center forecasts (Hitchens and Brooks 2012)

O Convection-allowing models updraft-helicity as forecast for severe (courtesy
Burkely Gallo and Patrick Skinner)

= Different thresholds at one time
= Same threshold at different lead times




ROC diagram (R=1)
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Impact of changing base rate

O

e Performance diagram
O POD vs Success Ratio (1-FAR)
O Has Bias, Critical Success Index information

O Success Ratio is probability that event is “yes” if forecast is “yes”




Performance diagrams
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Performance Diagram (d'=1)
, f=0.01=0.10  =0.25
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What if R#1? (d’=1)

O
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* Independent of base rate




Performance diagrams (d’=1)
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e Depends on base rate




Relating quality and relative value

O

* Richardson (2000)-cost-loss problem and relative value

O Focused on probabilistic vs deterministic forecasts and impact of
ensemble size




Richardson (2000)
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Relating quality and relative value

O

* Richardson (2000)-cost-loss problem and relative value

O Focused on probabilistic vs deterministic forecasts and impact of
ensemble size

e Drummond and Holte (2006)

O Combined base rate and costs of errors

O Comparing different systems




Cost curves (Drummond and Holte 2006)
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False Positive Rate PC(+) — Probability Cost

Fig.| 12 (a) Two ROC curves whose performance is to be compared — (b) Corresponding cost curves

o PC(+)=p(y)*Cost(miss)/[p(y)*Cost(miss)+p(n)*cost(FA)]
e “Bidirectional point-line duality”!




e Wandishin and Brooks (2002) show how to find relative
value of forecasts in terms of POD, POFD, f, and o

e Implied a of system: Move along d’ curve and finding
combo of POD and POFD associated with it

O Cost associated with false alarm increases with o

* o between DFR and SR find value (operating range)

O Low d* cut-off if R#1 when users prefer “climo” forecast



What o looks like on a ROC diagram

0.4 4

o4l [/

0.0 F . . . .
0.0 0.2 0.4 0.6 0.8 1.0
POFD




What o looks like on performance (R=1)
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Quality-Decision Threshold

O
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o Low-d* cut-off: all users prefer base rate forecasts
* “Non-vertical” QDT seen in CAM forecasts (hidden slide)




Looking at real forecasts

O

e Problem with correct forecasts of non-events

o Estimate either f (base rate of problem) or d in 2x2 table

O Eliminate “easy” correct nulls-increases apparent f
O Forecasting tornado vs. no storm or vs. severe non-tornadic?
O High-res model-regions with clearly no threat?

* Ambiguity between f and d’ has quantitative issues, but not

qgualitative
O As f gets larger, d’ gets smaller, QDT curves move up and to the left




Ambiguity of d’ and f for real systems

0.8

0.6

POD

0.4

0.2

()

d',f Lines Through 2001 US Tornado Warning
(adapted from Brooks 2004)

0 0.2 0.4 0.6 0.8 1

SR=1-FAR ]




Looking at real forecasts

O

e Problem with correct forecasts of non-events

» Estimate either f (base rate of problem) or d in 2x2 table

O Eliminate “easy” correct nulls-increases apparent f
O Forecasting tornado vs. no storm or vs. severe non-tornadic?
O High-res model-regions with clearly no threat?

* Ambiguity between f and d’ has quantitative issues, but not

qgualitative
O As f gets larger, d’ gets smaller, QDT curves move up and to the left

* 4-panel figure for US annual tornado warning performance




ROC US Tornado Warnings zROC
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What happened in 2012/37
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* Relationships between different metrics can be seen

O Rare events: POD sensitive, FAR insensitive unless never forecast
O For R=1, d’ curves have max near bias=1 on performance

e Value curves can be drawn on ROC, performance

e Quality-decision threshold show changes in quality (d*)
and the implied decision threshold (o)

e Monitoring can help identify changes in forecast system
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