The Relationship Between ROC, Performance, and the Quality-Decision Threshold Diagrams

HAROLD BROOKS NOAA/NATIONAL SEVERE STORMS LAB HAROLD.BROOKS@NOAA.GOV @HEBROOKS87 UNIV. OF OKLAHOMA SCHOOL OF METEOROLOGY

THANKS TO JIMMY CORREIA AND BURKELY GALLO

How this got started

Murphy (1993)-relationship between quality and value

• Early 2000s

- Was a goal of POD=0.8, FAR=0.5 for tornado warnings reasonable?
- "With our current science, there's no excuse for an FAR>0.25"

More recent

• What happened with US tornado warning performance in 2012/3?

Basic premises

- Visualization of multiple aspects of forecast performance can help in understanding of system
 - Different diagrams emphasize/hide different things
 - Choices reflect implicit statement of values
 - * "The numbers have no way of speaking for themselves. We speak for them. We imbue them with meaning."-N. Silver, The Signal and the Noise
 - O I live in the world of rare events and short-term forecasts
- Use toy models of forecasting to understand relationships
- Comparison to "real" forecasts

Long-term goals

- Create a simple model of forecast systems that we can use to look at impacts of changes in any aspect
 - O Improving science
 - Different user decision problems
 - Probabilistic forecasts that can be thresholded

Exploit 2x2 Tables							
Quality				Value			
		Event				Event	
		Y	Ν			Y	N
Forecast	Y	а	b	Action?	Y	A	В
	Ν	с	d		N	C	D
 POD=a/(a+c) 							
 POFD=b/(b+d) 				• Misclassification Cost Ratio (α)			
 SR=1-FAR=b/(a+b) 				• Act if $p > \alpha = \frac{(B-D)}{1-D}$			
 DFR=c/(c+d) 				• Act if $p > \alpha = \frac{Cost(FA)}{Cost(FA) + Cost(ME)}$			
 Base rate=f=(a+c)/(a+b+c+d) 							

Modelling the Problem

- Signal Detection Theory [following Mason (1982)]
 - Gaussian distributions for "yes" and "no" events, separated by d'
 - Ratio of standard deviations (R) = $\frac{\sigma_{no}}{\sigma_{ves}}$
 - Local separation (d*) comes from z(POD)-z(POFD)
 - ✓ If R=1, d*=d' always
- f=base rate of event requiring decisions (needed to get all elements of table)

Basic diagrams today

- Relative operating characteristics (Mason 1982)
 - POD vs. POFD
 - No information on bias
 - For rare events, real forecasts typically cluster in low POFD
 - Also show z-transform diagram of POD and POFD
- Performance diagram (Roebber 2009)
 - Reversed axes from precision-recall curve
 - POD vs SR
 - No information on correct forecasts of non-events
 - More informative for rare events (Saito and Rehmsmeier 2015)
- Quality-decision threshold (new?)

o α of user for whom forecast is "preferred" vs. d*

Datasets

- Theoretical Gaussian distributions
 - Focus on d'=1 with R=0.5, 1.0, 2.0
- US tornado warnings (Brooks and Correia 2018)
- Hidden slides
 - Storm Prediction Center forecasts (Hitchens and Brooks 2012)
 - Convection-allowing models updraft-helicity as forecast for severe (courtesy Burkely Gallo and Patrick Skinner)
 - Different thresholds at one time
 - Same threshold at different lead times

POFD

Impact of changing base rate

• Performance diagram

- O POD vs Success Ratio (1-FAR)
- Has Bias, Critical Success Index information
- Success Ratio is probability that event is "yes" if forecast is "yes"

Independent of base rate

Depends on base rate

Relating quality and relative value

- Richardson (2000)-cost-loss problem and relative value
 - Focused on probabilistic vs deterministic forecasts and impact of ensemble size

Relating quality and relative value

- Richardson (2000)-cost-loss problem and relative value
 - Focused on probabilistic vs deterministic forecasts and impact of ensemble size

Drummond and Holte (2006)

- Combined base rate and costs of errors
- Comparing different systems

Fig. 12 (a) Two ROC curves whose performance is to be compared — (b) Corresponding cost curves

- PC(+)=p(y)*Cost(miss)/[p(y)*Cost(miss)+p(n)*cost(FA)]
- "Bidirectional point-line duality"!

- Wandishin and Brooks (2002) show how to find relative value of forecasts in terms of POD, POFD, f, and α
- Implied α of system: Move along d' curve and finding combo of POD and POFD associated with it
 - $\ensuremath{\circ}$ Cost associated with false alarm increases with α
- α between DFR and SR find value (operating range)
 Low d* cut-off if R≠1 when users prefer "climo" forecast

What α looks like on a ROC diagram

What α looks like on performance (R=1)

SR

- Low-d* cut-off: all users prefer base rate forecasts
- "Non-vertical" QDT seen in CAM forecasts (hidden slide)

Looking at real forecasts

- Problem with correct forecasts of non-events
- Estimate either f (base rate of problem) or d in 2x2 table
 - Eliminate "easy" correct nulls-increases apparent f
 - Forecasting tornado vs. no storm or vs. severe non-tornadic?
 - High-res model-regions with clearly no threat?
- Ambiguity between f and d' has quantitative issues, but not qualitative
 - As f gets larger, d' gets smaller, QDT curves move up and to the left

Looking at real forecasts

- Problem with correct forecasts of non-events
- Estimate either f (base rate of problem) or d in 2x2 table
 - Eliminate "easy" correct nulls-increases apparent f
 - Forecasting tornado vs. no storm or vs. severe non-tornadic?
 - High-res model-regions with clearly no threat?
- Ambiguity between f and d' has quantitative issues, but not qualitative
 - As f gets larger, d' gets smaller, QDT curves move up and to the left
- 4-panel figure for US annual tornado warning performance

Performance

Quality-Decision Threshold

Final thoughts

- Relationships between different metrics can be seen
 Rare events: POD sensitive, FAR insensitive unless never forecast
 For R=1, d' curves have max near bias=1 on performance
- Value curves can be drawn on ROC, performance
- Quality-decision threshold show changes in quality (d*) and the implied decision threshold (α)
- Monitoring can help identify changes in forecast system

References

- Brooks, H. E., 2004: Tornado warning performance in the past and future: A perspective from signal detection theory. *Bull. Amer. Meteor. Soc.*, **85**, 837–843.
- Brooks, H. E., and J. Correia Jr., 2018: Long-term performance metrics for National Weather Service tornado warnings. *Wea. Forecasting*, **33**, 1501-1511.
- Drummond, C., and R. C. Holte, 2006: Cost curves: An improved method for visualizing classifier performance. *Machine Learning*, **65**, 95-130
- Hitchens, N. M., and H. E. Brooks, 2012: Evaluation of the Storm Prediction Center's day 1 convective outlooks. *Wea. Forecasting*, **27**, 1580–1585.
- Mason, I. B., 1982: A model for assessment of weather forecasts. Aust. Meteor. Mag., 30, 291–303.

References (cont.)

- Murphy, A. H., 1993: What is a good forecast? An essay on the nature of goodness in weather forecasting. *Wea. Forecasting*, 8, 281–293.
- Richardson, D. S., 2000: Skill and relative economic value of the ECMWF ensemble pediction system. *Q. J. R. Meteorol. Soc.*, **126**, 649–667.
- Roebber, P. J., and Bosart, L. E., 1996: The complex relationship between forecast skill and forecast value: a real-world analysis. *Wea. Forecasting*, **11**, 544–559.
- Roebber, P. J., 2009: Visualizing multiple measures of forecast quality. Wea. Forecasting, 24, 601–608.
- Saito, T., and M. Rehmsmeier, 2015: The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. *PLOS ONE*, DOI:10.1371/journal.pone.0118432
- Wandishin, M. S., and H. E. Brooks, 2002: On the relationship between Clayton's skill score and expected value for forecasts of binary events. *Meteor. Appl.*, 9, 455–459.