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Motivation

e Proper scores are essential for NWP development involving ensemble forecasts
[Gneiting and Raftery, 2007]

e The Continuous Ranked Probability Score (CRPS) is a widely used proper score

e Users as well as developers may wish to better understand what causes a change
in the CRPS, which can have several reasons
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A homogeneous Gaussian forecast-observation distribution

Let us consider a stochastic model of the forecast-observation distribution

f = f+ o with (].)
f=ay+pBn+b (2)

e with ensemble members f;, ensemble mean f, ensemble variance o2 and
observation y

e the model is homogeneous and Gaussian: «, 3,0, b are constants and
Ckym ~ N(0,1); y ~ N(0,w?) are independent Gaussian random variables

e based on extensions of toy models described by Weigel and Bowler [2009] and

Leutbecher and Ben Bouallegue [2020], see Leutbecher and Haiden [2020] for
details
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The expected CRPS for the stochastic model

It can be shown that the expected CRPS C satisfies

€ b2 b,
C=— 2 4 202 — * by erf | ——— | —
vE VT U*exp< 2+2o$)+\f N (W) 0*]
where
€2 is the variance of the error of the ensemble mean

b, is the mean error of the ensemble mean (i.e. the bias) normalised by €
o« is the spread-error ratio, i.e. ensemble stdev normalised by ¢
erf is the error function, erf(z) = ffo exp(—t?) dt

SSECMWF

M. Leutbecher and T. Haiden Understanding . ..the CRPS 2020-IVMW-0O

4



The expected CRPS for the stochastic model

It can be shown that the expected CRPS C satisfies

€ b2 b
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Jr|VeT "*exp< z+zag) Vb er (W 7
where
€2 is the variance of the error of the ensemble mean

b, is the mean error of the ensemble mean (i.e. the bias) normalised by €
o« is the spread-error ratio, i.e. ensemble stdev normalised by ¢

. . _ 2 Z 2
erf is the error function, erf(z) = e Jo exp(—t%) dt

For a perfectly reliable ensemble, we have b, = 0 and o, = 1. This implies [...] =1
and

€
C_ﬁ
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Linking CRPS and normalized bias

vme~! CRPS
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Linking CRPS and spread-error ratio
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The homogeneous Gaussian model as an approximation
for real NWP data

e Ensemble verification data can be analysed using the relationship derived for the
homogeneous Gaussian model

e Doing so turns this relationship into an approximation of the exact CRPS.

e Is it useful even if real data are inhomogeneous and deviate from normality?
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How good is the approximation?
5-day ENS forecast of 850 hPa temperature, JJA2019

CRPS (K) full Gaussian approximation C (K)
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ACRPS (percent)

Impact of bias correction
5-day ensemble fc of T850, JJA2019

e

AC (percent)
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Change in CRPS versus normalised bias
5-day ensemble fc of T850, JJA2019

ACRPS (percent)
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Decompositions
Score changes can be decomposed exactly into three terms

AC = A+ Ay, +Ap,  with

A =C(€ 04, by) — C(e, 04, by) due to ens. mean err. variance
Ay, =C(€ 4, by) —C(€ 04, by) due to spread-error ratio
Ap, = C(E,54, b.) — C(¢,54,b,)  due to bias
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An elegant decomposition of the CRPS into reliability, resolution and uncertainty arises
following Siegert [2017]

CRPS = REL — RES + UNC
REL=C—¢/V7
RES = (w—¢€) /VT

UNC =w/vr. £ ECMWF
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Summary

e Analytical expression for expected CRPS given a homogeneous Gaussian
forecast-observation distribution

e Works well as approximation of the sample mean CRPS for medium-range
weather forecasts of upper air variables

e Score changes can be understood in terms of changes in the variance of the
ensemble mean, the spread-error ratio and the bias

e This diagnostic can be added fairly easily to existing verification without the need
for postprocessing

e The sensitivity of the CRPS to day-to-day variations in ensemble spread
(heteroscedasticity) appears rather weak.

e Optimising ensemble configurations based on the CRPS of direct model output
leads to over-dispersion in the presence of bias
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