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Evaluation of probabilistic forecasts: Proper scoring rules

0 2 4 6 8 10

A (negatively oriented) proper scoring
rule is any function

S(F , y)

such that for all F ,G ,

EY∼GS(G ,Y ) ≤ EY∼GS(F ,Y ).

Popular examples include

the logarithmic score

LogS(F , y) = − log(f (y))

the continuous ranked probability score

CRPS(F , y) =

∫ ∞
−∞

(F (z)−1{y ≤ z})2dz
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Overview

The R package scoringRules provides functionality for
comparative evaluation of probabilistic models based on proper
scoring rules, covering a wide range of situations in applied work

I parametric predictive distributions

I simulated predictive distributions (e.g. ensemble forecasts)

I (simulated) multivariate predictive distributions

The package is available from Github and CRAN
(https://cran.r-project.org/package=scoringRules).

Documenting paper with more details:

Jordan, A., Krüger, F. and Lerch, S. (2019) Evaluating probabilistic forecasts

with scoringRules. Journal of Statistical Software, 90, 1–37.

https://cran.r-project.org/package=scoringRules


4

Parametric predictive distributions

Essential functions for score computation follow the naming
convention [score] [suffix](), for example

obs <- rnorm(5)

crps_norm(obs, mean = c(1:5), sd = c(1:5))

## [1] 0.288 1.625 1.570 2.003 2.744

Package developers may write S3 methods that hook into the S3
generic functions crps() and logs(). We reserve methods for the
class ’numeric’.

crps(obs, family = "normal", mean = c(1:5), sd = c(1:5))

## [1] 0.288 1.625 1.570 2.003 2.744
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Examples

crps() and logs() functions with family argument are wrappers for
the [score] [suffix]() functions, but with meaningful error
messages and input checks.

logs_norm(obs, mean = c(1:5), sd = c(1:4,-5))

## Warning in dnorm(y, location, scale, log = TRUE):

NaNs produced

## [1] 0.988 2.434 2.404 2.660 NaN

logs(obs, family = "normal", mean = c(1:5),

sd = c(1:4,-5))

## Error in checkInput(input): Parameter ’sd’

contains non-positive values.
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Implemented parametric families

Closed-form expressions of the CRPS can be obtained for many
parametric distributions and allow for efficient computation.Journal of Statistical Software 5

Distribution Family CRPS LogS Additional parameters

Distributions for variables on the real line
Laplace "lapl" X X
Logistic "logis" X X
Normal "norm" X X
Mixture of normals "mixnorm" X X
Student’s t "t" X X
Two-piece exponential "2pexp" X X
Two-piece normal "2pnorm" X X

Distributions for non-negative variables
Exponential "exp" X X
Gamma "gamma" X X
Log-Laplace "llapl" X X
Log-logistic "llogis" X X
Log-normal "lnorm" X X

Distributions with flexible support and/or point masses
Beta "beta" X X limits
Uniform "unif" X X limits, point masses
Exponential "exp2" X location, scale

"expM" X location, scale, point mass
Gen. extreme value "gev" X X
Gen. Pareto "gpd" X X point mass (CRPS only)
Logistic "tlogis" X X limits (truncation)

"clogis" X limits (censoring)
"gtclogis" X limits, point masses

Normal "tnorm" X X limits (truncation)
"cnorm" X limits (censoring)
"gtcnorm" X limits, point masses

Student’s t "tt" X X limits (truncation)
"ct" X limits (censoring)
"gtct" X limits, point masses

Distributions for discrete variables
Binomial "binom" X X
Hypergeometric "hyper" X X
Negative binomial "nbinom" X X
Poisson "pois" X X

Table 1: List of implemented parametric families for which CRPS and LogS can be computed
via crps() and logs(). The character string is the corresponding value for the family
argument. The CRPS formulas are given in Appendix A.
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Implemented parametric families (continued)Journal of Statistical Software 5
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Simulated forecast distributions

In various applications (NWP ensembles, Bayesian forecasting
models,...), the forecast distribution is only available through a
discrete sample X1, . . . ,Xm ∼ F .

The sample needs to be converted into an estimated distribution
(F̂m(z)) to compute a proper scoring rule.

Using the empirical CDF as approximation the CRPS reduces to

CRPS(F̂m, y) =
1

m

m∑
i=1

|Xi − y | − 1

2m2

m∑
i=1

m∑
j=1

|Xi − Xj |

or equivalently

CRPS(F̂m, y) =
2

m2

m∑
i=1

(X(i) − y)

(
m1{y < X(i)} − i +

1

2

)
.
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Simulated forecast distributions

For the LogS, a predictive density is required and makes the use of
kernel density estimation methods necessary.

crps sample() and logs sample(), provide implementations to
compute CRPS and LogS for a vector of observations and a matrix
with each row comprising one corresponding simulated sample.

The ’method’ argument controls which approximation method is
used.

Implementation choices are based on theoretical considerations in

Krüger, F., Lerch, S., Thorarinsdottir, T.L. and Gneiting, T. (2020)

Predictive Inference Based on Markov Chain Monte Carlo Output.

International Statistical Review, in press.
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Simulated forecast distributions

obs_n <- c(0, 1, 2)

sample_nm <- matrix(rnorm(3e4, mean = 2, sd = 3),

nrow = 3)

crps_sample(y = obs_n, dat = sample_nm, method = "edf",

w = NULL, bw = NULL, num_int = FALSE,

show_messages = TRUE)

## [1] 1.198 0.853 0.697

logs_sample(y = obs_n, dat = sample_nm, bw = NULL,

show_messages = TRUE)

## Using the log score with kernel density estimation

tends to be fragile -- see KLTG (2019) for details.

## [1] 2.24 2.11 2.00
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Usage example 1: Ensemble post-processing

Statistical post-processing is widely used to correct systematic
errors of NWP ensemble predictions.

Here we illustrate how to evaluate post-processed ensemble
forecasts of precipitation, based on data and methods from the
crch package (Messner et al. 2016).

Using built-in functionality of the crch package we estimate a
censored Gaussian regression model

P(Y = 0|X1, . . . ,Xm) = Fθ(0)

P(Y ≤ y |X1, . . . ,Xm) = Fθ(y), for y > 0,

θ = (µ, σ) = (a0 + a1X̄ , exp(b0 + b1s))

The example uses data for 3-day precipitation accumulations for
Innsbruck, Austria from January 2000 to September 2013.



11

Usage example 1: Ensemble post-processing

Statistical post-processing is widely used to correct systematic
errors of NWP ensemble predictions.

Here we illustrate how to evaluate post-processed ensemble
forecasts of precipitation, based on data and methods from the
crch package (Messner et al. 2016).

Using built-in functionality of the crch package we estimate a
censored Gaussian regression model

P(Y = 0|X1, . . . ,Xm) = Fθ(0)

P(Y ≤ y |X1, . . . ,Xm) = Fθ(y), for y > 0,

θ = (µ, σ) = (a0 + a1X̄ , exp(b0 + b1s))

The example uses data for 3-day precipitation accumulations for
Innsbruck, Austria from January 2000 to September 2013.



12

Usage example 1: Ensemble post-processing

library("crch"); data("RainIbk", package = "crch")

RainIbk <- sqrt(RainIbk)

ensfc <- RainIbk[, grep('^rainfc', names(RainIbk))]

RainIbk$ensmean <- apply(ensfc, 1, mean)

RainIbk$enssd <- apply(ensfc, 1, sd)

RainIbk <- subset(RainIbk, enssd > 0)

data_train <- subset(RainIbk,

as.Date(rownames(RainIbk)) <= "2004-11-30")

data_eval <- subset(RainIbk,

as.Date(rownames(RainIbk)) >= "2005-01-01")

ens_fc <- data_eval[, grep('^rainfc', names(RainIbk))]

Estimation of censored regression models

CRCHgauss <- crch(rain ~ ensmean | log(enssd), data_train,

dist = "gaussian", left = 0)

gauss_mu <- predict(CRCHgauss, data_eval, type = "location")

gauss_sc <- predict(CRCHgauss, data_eval, type = "scale")
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Usage example 1: Ensemble post-processing – Results

2005−07−25
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Precipitation amount in mm

0 5 10

cens. logistic
cens. Gaussian
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obs <- data_eval$rain

gauss_crps <- crps(obs, family = "cnorm", location = gauss_mu,

scale = gauss_sc, lower = 0, upper = Inf)

ens_crps <- crps_sample(obs, dat = as.matrix(ens_fc))

scores <- data.frame(Postprocessed = gauss_crps, Ensemble = ens_crps)

sapply(scores, mean)

## Postprocessed Ensemble

## 0.876 1.321
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Usage example 2: Parameter estimation

Parameters of a model’s forecast distribution can be determined by
optimizing the value of a proper scoring rule, averaged over a
training sample.

The computation functions [score] [family]() entail little
overhead in terms of input checks and are well suited for use in
numerical optimization procedures such as optim().

Functions to compute gradients and Hessian matrices of the CRPS
have been implemented for a subset of parametric families, and
can be supplied to assist numerical optimizers.
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Usage example 2: Parameter estimation

meancrps <- function(y_train, param){
mean(crps_norm(y = y_train, mean = param[1], sd = param[2]))}

grad_meancrps <- function(y_train, param){
apply(gradcrps_norm(y_train, param[1], param[2]), 2, mean)}

train_data <- rnorm(500, 1, -2)

estimates_crps <- optim(par = c(1, 1), fn = meancrps,

gr = grad_meancrps, method = "BFGS", y_train = train_data)$par

estimates_ml <- c(mean(train_data),

sd(train_data) * sqrt((n - 1) / n))
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Usage example 2: Parameter estimation – Results

Journal of Statistical Software 17
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Figure 5: Boxplots of deviations from the true parameter values for estimates obtained via
minimum CRPS and minimum LogS (i.e., maximum likelihood) estimation based on 1 000
independent samples of size 500 from a normal distribution with mean µ = −1 and standard
deviation σ = 2.

R> grad_meancrps <- function(y_train, param) apply(gradcrps_norm(y_train,
+ param[1], param[2]), 2, mean)

These functions can then be passed to optim(), for example, mean and standard deviation
of a normal distribution with true values −1 and 2 can be estimated as illustrated in the
following. The estimation with sample size 500 is repeated 1 000 times.

R> R <- 1000
R> n <- 500
R> mu_true <- -1
R> sigma_true <- 2
R> estimates_ml <- matrix(NA, nrow = R, ncol = 2)
R> estimates_crps <- matrix(NA, nrow = R, ncol = 2)
R> for (r in 1:R) {
+ dat <- rnorm(n, mu_true, sigma_true)
+ estimates_crps[r, ] <- optim(par = c(1, 1), fn = meancrps,
+ gr = grad_meancrps, method = "BFGS", y_train = dat)$par
+ estimates_ml[r, ] <- c(mean(dat), sd(dat) * sqrt((n - 1) / n))
+ }

Figure 5 compares minimum CRPS and minimum LogS (i.e., maximum likelihood) parameter
estimates. The differences to the true values show very similar distributions and illustrate the
consistency of general optimum score estimates (Gneiting and Raftery 2007, Equation 59). For
the standard deviation parameter σ, the difference between estimate and true value exhibits
slightly less variability for the maximum likelihood method.

5. Multivariate scoring rules
The basic concept of proper scoring rules can be extended to multivariate forecast distributions
for which the support Ω is given by Rd, d ∈ {2, 3, . . .}. A variety of multivariate proper

Boxplots of deviations from the true parameter values for estimates

obtained via minimum CRPS and minimum LogS (i.e., maximum

likelihood) estimation based on 1 000 independent samples of size 500.
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Multivariate proper scoring rules: Background

Popular multivariate proper scoring rules for observations y ∈ Rd

and a sample X1, . . . ,Xm from a multivariate forecast distribution
include the energy score

ES(F , y) =
1

m

m∑
i=1

‖Xi − y‖ − 1

2m2

m∑
i=1

m∑
j=1

‖Xi − Xj‖,

and the variogram score of order p

VSp(F , y) =
d∑

i=1

d∑
j=1

wi ,j

(∣∣∣y (i) − y (j)
∣∣∣p − 1

m

m∑
k=1

∣∣∣X (i)
k − X

(j)
k

∣∣∣p)2

.

Implementation in scoringRules (for single forecast cases only):

es sample(y, dat)

vs sample(y, dat, w = NULL, p = 0.5)
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Summary and conclusions

I functionality to compute proper scoring rules for a wide range
of situations prevalent in applications

I generally applicable and numerically efficient implementations
based on theoretical considerations

I comprehensive collection of analytical expressions of the
CRPS for parametric distributions

I Contributions are welcome! Examples include
I parametric distributions relevant in your work
I S3 methods for classes other than ‘numeric’ (e.g., crch

model objects)

I Possible future extensions include the addition of new scores
such as weighted scoring rules.

Jordan, A., Krüger, F. and Lerch, S. (2019) Evaluating probabilistic forecasts

with scoringRules. Journal of Statistical Software, 90, 1–37.
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