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Reliability

Target: Binary outcome Y ∈ {0, 1}

often an indicator of a threshold exceedence
e.g., occurence of precipitation

Probabilistic Forecast X ∈ [0, 1]

X = 0.25 means we assign 25% probability to the event {Y = 1}

Assess reliability or calibration

if X = 0.25, then 25% of the cases should be events.
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Example: 6 Unique Forecast Values

Forecast Obs. Freq. nj
0.0 0.18 92
0.2 0.30 79
0.4 0.39 72
0.6 0.55 86
0.8 0.63 90
1.0 0.80 81

compare the red line against the diagonal.
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Example: 101 Unique Forecast Values

Forecast Obs. Freq. nj
0.00 0.38 8
0.01 0.29 7
0.02 0.50 2
0.03 0.00 4
0.04 0.00 5
...

...
...

0.99 0.60 5
1.00 0.88 8

Solution: Binning (and Counting)
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Continuous Forecast Values

Binning and Counting

Partition [0, 1] in m ∈ N bins. But:
How many bins?
How do we partition?

Common: Equidistant binning
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Binning and Counting: Instability

Data set with 92 observations

Location: Niamey, Niger

Time: July – September, 2016

Outcome: daily occurence of
precipitation

Prediction: 24-hour ahead EMOS
model

Data from Vogel et al. (2020)
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CORP Reliability Diagrams

Estimate the conditional event probability
CEP(x) = P(Y = 1|X = x)

P(Y = 1|X = x) = E(1{Y=1}|X = x)

isotonic (nonparametric mean) regression
a higher x should have a higher CEP(x)!
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CORP Reliability Diagrams

Consistent
Optimally Binned
Reproducible
P AV-Algorithm
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Pool-adjacent-violators algorithm

Isotonic regression finds an optimal
nondecreasing free-form fit

Proposed by Ayer et al. (1955)

Calibrating the predicted
probabilities of supervised machine
learning models (Niculescu-Mizil and
Caruana 2005).
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Reproducible
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Optimal Binning
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Optimal Binning

Optimal: minimizing the estimation MSE

min
n∑
i=1

(
ĈEPn(xi)− CEP(xi)

)2
Asymptotically, choosing O(n1/3)
bins is optimal.

CORP does exactly this!

CORP is also optimal in
finite samples.

Further Simulation Results
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Consistent

asymptotic theory for isotonic regression (El Barmi and Mukerjee, 2005; Wright,
1981) ∣∣ĈEPn(x)− CEP(x)

∣∣ P−→ 0 ∀x ∈ [0, 1]

true
simulated

CORP
estimated
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Score Decomposition

Average Brier Score:

S̄X =
1
n

n∑
i=1

(xi − yi)2

Why is forecast A better than B?

S̄X = MCB− DSC+ UNC

decomposes into
MCB: miscalibration (reliability)
DSC: discrimination (resolution)
UNC: uncertainty

Decades of literature:

Murphy (1973)
Dawid (1986)
Stephenson et al. (2008)
Bröcker (2009)
Kull and Flach (2015)
Siegert (2017)
Pohle (2020)
among many others.
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CORP Score Decomposition

score of PAV-recalibrated x̂i

S̄C =
1
n

n∑
i=1

(x̂i − yi)2

score of reference forecast r = 1
n
∑n

i=1 yi

S̄R =
1
n

n∑
i=1

(r − yi)2

Adaptation from Dawid (1986) and Siegert (2017)

S̄X =
(
S̄X − S̄C

)︸ ︷︷ ︸
MCB

−
(
S̄R − S̄C

)︸ ︷︷ ︸
DSC

+ S̄R︸︷︷︸
UNC

(1)

xi = 0.71

x̂i = 0.8

r = 0.58
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Properties of the CORP decomposition

Theorem 1 Given any set of original forecast values and associated binary events,
suppose that we apply the PAV algorithm to generate a (re)calibrated forecast, and
use the marginal event frequency as reference forecast. Then, for every proper
scoring rule S, the decomposition defined by Eq. [1] satisfies the following:

(a) MCB ≥ 0 with equality if the original forecast itself is calibrated.
(b) MCB > 0 if the score is strictly proper and the original forecast is not calibrated.
(c) DSC ≥ 0 with equality if the (re)calibrated forecast is constant.
(d) DSC > 0 if the score is strictly proper and the (re)calibrated forecast is not

constant.
(e) The decomposition is exact.
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Conclusion

Results

Optimality in finite samples
and asymptotically
Stability without the need of
tuning parameters
Intuitive loss decomposition

Outlook

Generalization to real-valued
outcomes
Blueprint for novel diagnostic
and inference tools

Preprint: https://arxiv.org/abs/2008.03033
R package: https://github.com/aijordan/reliabilitydiag
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Thanks for your attention!



Optimal Binning: Simulation Evidence

Uniform Linear Beta Mixture
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Uncertainty Quantification

Under simplifying assumptions, continuous x (Wright, 1981):

n1/3 · Σ−1(x) ·
(
ĈEPn(x)− CEP(x)

) d−→ 2T ,

where T denotes Cherno�’s distribution.
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Uncertainty Quantification II

Automatic selection of:
resampling
continuous
asymptotic theory
discrete
asymptotic theory
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Coverage Rates: Simulation Evidence
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Instability of Quantile Binning
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