EVALUATING PROBABILISTIC CLASSIFIERS Reliability diagrams and score decompositions revisited

JOINT WORK WITH T. DIMITRIADIS AND T. GNEITING

Alexander I. Jordan

HEIDELBERG INSTITUTE FOR THEORETICAL STUDIES COMPUTATIONAL STATISTICS

INTERNATIONAL VERIFICATION METHODS WORKSHOP ONLINE NOVEMBER 18, 2020

RELIABILITY

Target: Binary outcome $Y \in \{0,1\}$

- often an indicator of a threshold exceedence
- e.g., occurrence of precipitation

Probabilistic Forecast $X \in [0, 1]$

I X = 0.25 means we assign 25% probability to the **event** {Y = 1}

Assess reliability or calibration

if X = 0.25, then 25% of the cases should be events.

EXAMPLE: 6 UNIQUE FORECAST VALUES

Forecast	Obs. Freq.	nj
0.0	0.18	92
0.2	0.30	79
0.4	0.39	72
0.6	0.55	86
0.8	0.63	90
1.0	0.80	81

compare the red line against the diagonal.

EXAMPLE: 101 UNIQUE FORECAST VALUES

Forecast	Obs. Freq.	n _j
0.00	0.38	8
0.01	0.29	7
0.02	0.50	2
0.03	0.00	4
0.04	0.00	5
:	:	÷
0.99 1.00	0.60 0.88	5 8

Solution: Binning (and Counting)

Binning and Counting

Partition [0, 1] in m ∈ N bins. But:
How many bins?
How do we partition?

Common: Equidistant binning

BINNING AND COUNTING: INSTABILITY

Data set with 92 observations

Location: Niamey, Niger

Time: July – September, 2016

Outcome: daily occurence of precipitation

Prediction: 24-hour ahead EMOS model

5

Data from Vogel et al. (2020)

CORP RELIABILITY DIAGRAMS

Estimate the **conditional event probability** $CEP(x) = \mathbb{P}(Y = 1|X = x)$

$$\mathbb{P}(Y=1|X=x)=\mathbb{E}(\mathbb{1}_{\{Y=1\}}|X=x)$$

isotonic (nonparametric mean) regressiona higher x should have a higher CEP(x)!

Consistent Optimally Binned Reproducible PAV-Algorithm

Isotonic regression finds an optimal nondecreasing free-form fit

Proposed by Ayer et al. (1955)

Calibrating the predicted probabilities of supervised machine learning models (Niculescu-Mizil and Caruana 2005).

Reproducible

PAV Isotonic Regression

OPTIMAL BINNING

Optimal Binning

Optimal: minimizing the estimation MSE

 $\min \sum_{i=1}^{n} \left(\widehat{\mathsf{CEP}}_n(x_i) - \mathsf{CEP}(x_i) \right)^2$

Asymptotically, choosing $\mathcal{O}(n^{1/3})$ bins is optimal.

CORP does exactly this!

- CORP - 5 - 10 - 50 - n^{1/6} - n^{1/3} - n^{1/2}

CONSISTENT

asymptotic theory for isotonic regression (El Barmi and Mukerjee, 2005; Wright, 1981)

$$\left|\widehat{\mathsf{CEP}}_n(x) - \mathsf{CEP}(x)\right| \stackrel{P}{\longrightarrow} \mathsf{O} \qquad \forall x \in [\mathsf{O}, \mathsf{1}]$$

SCORE DECOMPOSITION

Average Brier Score:

$$\bar{\mathsf{S}}_{\mathsf{X}} = \frac{1}{n} \sum_{i=1}^{n} (x_i - y_i)^2$$

Why is forecast A better than B?

 $\bar{S}_X = MCB - DSC + UNC$

decomposes into

- MCB: miscalibration (reliability)
- DSC: discrimination (resolution)
- UNC: uncertainty

Decades of literature:

Murphy (1973) Dawid (1986) Stephenson et al. (2008) Bröcker (2009) Kull and Flach (2015) Siegert (2017) Pohle (2020) among many others.

CORP SCORE DECOMPOSITION

score of PAV-recalibrated \hat{x}_i

$$\bar{\mathsf{S}}_{\mathsf{C}} = \frac{1}{n} \sum_{i=1}^{n} (\hat{x}_i - y_i)^2$$

score of reference forecast $r = \frac{1}{n} \sum_{i=1}^{n} y_i$

$$\bar{\mathsf{S}}_{\mathsf{R}} = \frac{1}{n} \sum_{i=1}^{n} (r - y_i)^2$$

Adaptation from Dawid (1986) and Siegert (2017)

$$\bar{S}_{X} = \underbrace{(\bar{S}_{X} - \bar{S}_{C})}_{MCB} - \underbrace{(\bar{S}_{R} - \bar{S}_{C})}_{DSC} + \underbrace{\bar{S}_{R}}_{UNC}$$
(1)

Theorem 1 Given any set of original forecast values and associated binary events, suppose that we apply the PAV algorithm to generate a (re)calibrated forecast, and use the marginal event frequency as reference forecast. Then, for every proper scoring rule S, the decomposition defined by Eq. [1] satisfies the following:

- (a) $MCB \ge o$ with equality if the original forecast itself is calibrated.
- (b) MCB > 0 if the score is strictly proper and the original forecast is not calibrated.
- (c) $DSC \ge o$ with equality if the (re)calibrated forecast is constant.
- (d) DSC > 0 if the score is strictly proper and the (re)calibrated forecast is not constant.
- (e) The decomposition is exact.

Results

- Optimality in finite samples and asymptotically
- Stability without the need of tuning parameters
- Intuitive loss decomposition

Outlook

- Generalization to real-valued outcomes
- Blueprint for novel diagnostic and inference tools

Preprint: https://arxiv.org/abs/2008.03033
R package: https://github.com/aijordan/reliabilitydiag

REFERENCES I

- Bröcker, J. (2009). Reliability, sufficiency, and the decomposition of proper scores. *Quarterly Journal of the Royal Meteorological Society*, 135(643):1512–1519.
- Dawid, A. P. (1986). Probability forecasting,. In *Encyclopedia of Statistical Sciences*, volume 7, pages 210–218. Wiley-Interscience.
- El Barmi, H. and Mukerjee, H. (2005). Inferences under a stochastic ordering constraint. *Journal of the American Statistical Association*, 100:252–261.
- Kull, M. and Flach, P. (2015). Novel decompositions of proper scoring rules for classification: Score adjustment as precursor to calibration. In *Machine Learning and Knowledge Discovery in Databases*, pages 68–85. Springer International Publishing.
- Murphy, A. H. (1973). A new vector partition of the probability score. Journal of Applied Meteorology, 12:595–600.
- Pohle, M.-O. (2020). The Murphy decomposition and the calibrationresolution principle: A new perspective on forecast evaluation. Preprint, https://arxiv.org/abs/2005.01835.
- Siegert, S. (2017). Simplifying and generalising Murphy's Brier score decomposition. *Quarterly Journal of the Royal Meteorological Society*, 143:1178–1183.
- Stephenson, D. B., Coelho, C. A. S., and Jolliffe, I. T. (2008). Two extra components in the Brier score decomposition. *Weather and Forecasting*, 23:752–757.
- Vogel, P., Knippertz, P., Gneiting, T., Fink, A. H., Klar, M., and Schlueter, A. (2020). Statistical forecasts for the occurrence of precipitation outperform global models over northern tropical Africa. Preprint, https://doi.org/10.1002/essoar.10502501.1.
- Wright, F. T. (1981). The asymptotic behavior of monotone regression estimates. Annals of Statistics, 9:443-448.

THANKS FOR YOUR ATTENTION!

OPTIMAL BINNING: SIMULATION EVIDENCE

- CORP - 5 - 10 - 50 - n^{1/6} - n^{1/3} - n^{1/2}

UNCERTAINTY QUANTIFICATION

Under simplifying assumptions, continuous x (Wright, 1981):

$$n^{1/3} \cdot \Sigma^{-1}(x) \cdot \left(\widehat{\operatorname{CEP}}_n(x) - \operatorname{CEP}(x)\right) \stackrel{d}{\longrightarrow} 2\mathcal{T},$$

where ${\cal T}$ denotes Chernoff's distribution.

Confidence bands

UNCERTAINTY QUANTIFICATION II

Automatic selection of: resampling continuous asymptotic theory discrete

asymptotic theory

Confidence Bands

Consistency Bands

COVERAGE RATES: SIMULATION EVIDENCE

Uncertainty Quantification via 🔹 continuous asymptotic theory 🔺 discrete asymptotic theory 🔳 resampling Number k of Distinct Forecast Values 🔶 10 🔶 20 🔷 50 🔶 Inf

INSTABILITY OF QUANTILE BINNING

