.

x

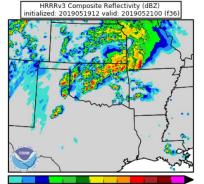
四日

 $\mathbf{\Lambda}$

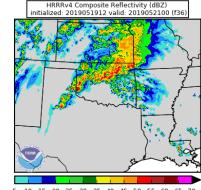
515

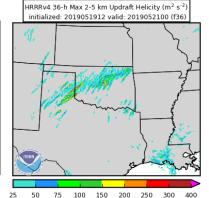
ž

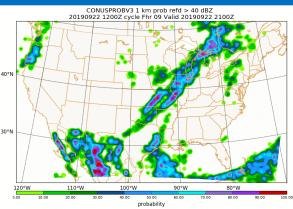
NATIONAL WEATHER SERVICE


NOAA

Methods and Tools Used to Verify Convection-Allowing Model Guidance at the NCEP/Environmental Modeling Center


November 17, 2020


Logan C. Dawson¹, Geoffrey S. Manikin¹, Perry C. Shafran^{1,2}, Binbin Zhou^{1,2}, Christopher MacIntosh^{1,3}, and Jason J. Levit¹


¹NOAA/NCEP/EMC, ²I.M. Systems Group, Inc., ³Systems Research Group

10 15 20 25 30 35 40 45 50 55 60 65

Convection-Allowing Models (CAMs) and Verification at EMC

- CAMs are run at sufficiently high resolution (~3-km) to adequately represent deep, moist convection without the use of a cumulus parameterization scheme
- Allow for extraction of storm attribute information, such as convective mode and potential convective hazards, from NWP guidance
 - Until recently, CAM verification at EMC had not evolved much beyond "traditional" metrics and methods that have long been used for mesoscale and global models
 - e.g., verification of standard surface and upper-air synoptic fields, precipitation, reflectivity, and aviation parameters
 - Recent efforts have been made to improve prior methods and incorporate additional methods for objectively verifying storm-attribute fields and new probabilistic products to help EMC better make decisions during the model development process

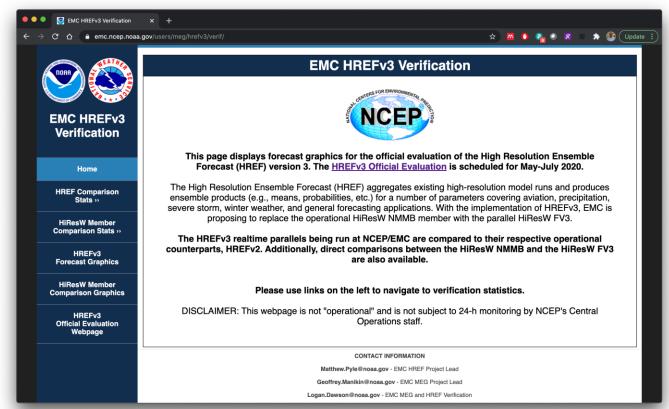
ž

औ

ĸ

明

 $\mathbf{\Lambda}$


515

CAM Metrics Outlined at 2018 DTC Community Unified Forecast System Test Plan and Metrics Workshop

ž

			Mantical			
ज़ौँ	Forecast Field	Application	Vertical	Temporal Attribute	Validation Source	Skill Scores
19.1			Attribute			
	Temperature					
	Specific Humidity		Column			
~~~	Wind					
Ŷ	CAPE/CIN	Environmental	Mixed, Most- Unstable, Surface-Based	Instantaneous	RAOBs	RMSE, BIAS
HEL HEL	Storm Relative Helicity		0-1, 0-3 km AGL			
1	Temperature		2-m			
	Dewpoint		<b>2-</b> m		METARs	
	Wind		10-m			
$\square$	Downward Shortwave	Air Quality/Energy	Surface	Instantaneous/Avg	ARM, Surfrad, USCRN	
U	Ceiling		Column		METARs	
	Visibility	Aviation	Surface	Instantaneous		CSI, BIAS, FSS, POD,
	Echo Top Height		Column	motuneous	MRMS Echo Top	FAR, AUR,
덝횒	Simulated Reflectivity	Sovere	Composite		MRMS Mosaic Composite	Performance Diagram
	Updraft Helicity		2-5, 0-3 km AGL	Hourly Maximum	Storm Reports	
	Precipitation	QPF/Winter	Surface	1-hr, 6-hr, 24-hr	Stage IV Precip	
	NATIONAL WE	ATHER SERVICE			Building a Weather-I	Ready Nation // 3

### Effort Was Made to Provide Comprehensive Verification for the Official Evaluation of HREFv3



ž

NATIONAL WEATHER SERVICE

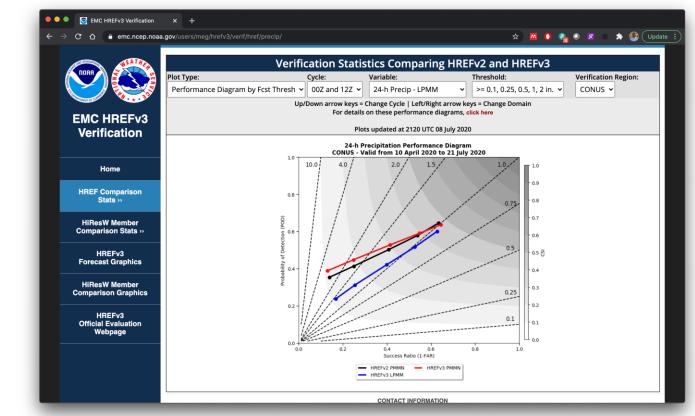
### Effort Was Made to Provide Comprehensive Verification for the Official Evaluation of HREFv3

		• •			
	EMC HREFv3 Verification				
EMC HREFv3 Verification					
	This page displays forecast graphics for the official evaluation of the High Resolution Ensemble				
Home	Forecasi Scorecards	(HREF) version 3. The <u>HREFv3 Official Evaluation</u> is scheduled for May-July 2020.			
HREF Comparison Stats ››	Surface & Upper Air	tion Ensemble Forecast (HREF) aggregates existing high-resolution model runs and produces ts (e.g., means, probabilities, etc.) for a number of parameters covering aviation, precipitation, ter weather, and general forecasting applications. With the implementation of HREFv3, EMC is			
HiResW Member	Precipitation	ng to replace the operational HiResW NMMB member with the parallel HiResW FV3.			
Comparison Stats » HREFv3	Reflectivity & Echo Top	altime parallels being run at NCEP/EMC are compared to their respective operatior Fv2. Additionally, direct comparisons between the HiResW NMMB and the HiResW are also available.			
Forecast Graphics	Surrogate Severe				
HiResW Member Comparison Graphics	САРЕ	Please use links on the left to navigate to verification statistics.			
HREFv3 Official Evaluation Webpage	Ceiling & Visibility	This webpage is not "operational" and is not subject to 24-h monitoring by NCEP's Central Operations staff.			
	CONTACT INFORMATION				
	Matthew.Pyle@noaa.gov - EMC HREF Project Lead				

**VATIONAL WEATHER SERVICE** 

ž

औ


 $\kappa$ 

明

⊿

212

### Effort Was Made to Provide Comprehensive Verification for the Official Evaluation of HREFv3



NATIONAL WEATHER SERVICE

ž

औ

R

明

51.50



ज़ौ

K

明

 $\mathbf{\Lambda}$ 

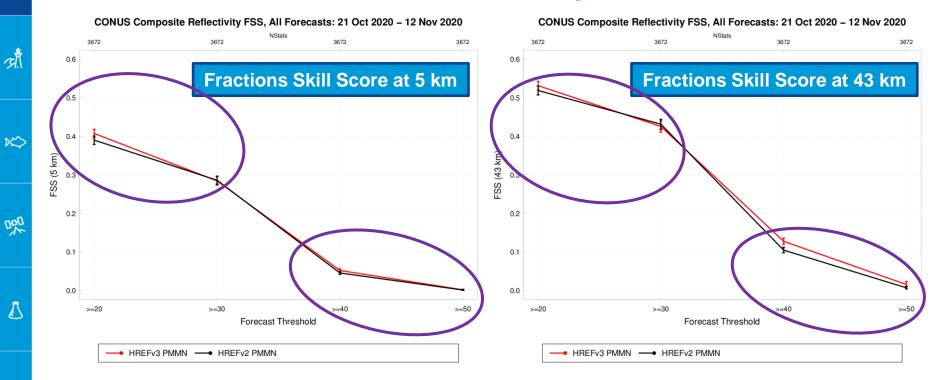
512

# **Highlights of Enhancements to CAM Verification**

- Radar verification improvements
- Addition of surrogate severe verification
- Using convective outlook areas as verification masking regions

#### All enhancements discussed herein have been implemented using MET, METplus, and METviewer

- Updated from legacy NCEP Mosaic products to the higher quality Multi-Radar Multi-Sensor (MRMS; Smith et al. 2016) products for radar observations
  - Rigorously QC'ed using algorithms that are continually being improved
- Enhancing verification using neighborhood-maximum approach
  - Categorical threshold exceedances are based on maximum value within a specified neighborhood (~40 km)
- Jointly using neighborhood and probabilistic methods for verifying reflectivity and echo top probability products
  - Allows the verification to provide context on model performance at the same scale as convective outlooks issued by NCEP/Storm Prediction Center (SPC)
  - Outlooks are based on the probability of severe convective hazards occurring within 25 miles (~40 km) of a point

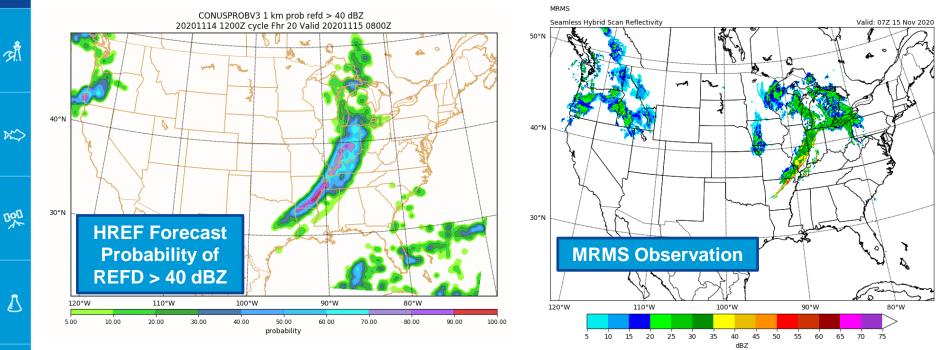

512

ž

औ

 $\kappa$ 

明

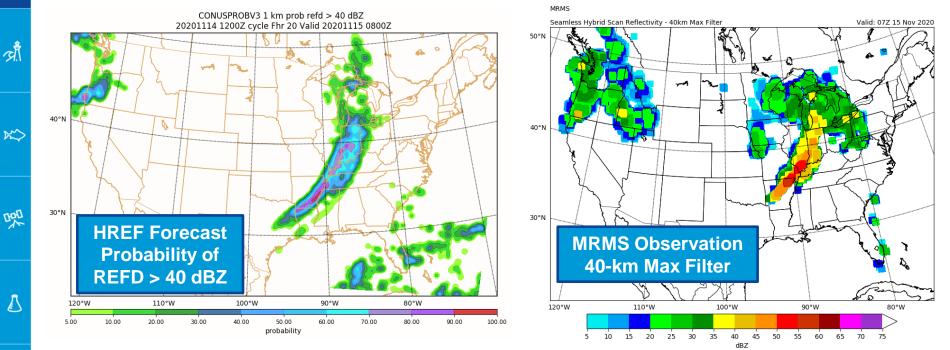



 Reflectivity forecasts are more skillful on the scale at which SPC convective outlooks are issued

#### NATIONAL WEATHER SERVICE

ž

51.50

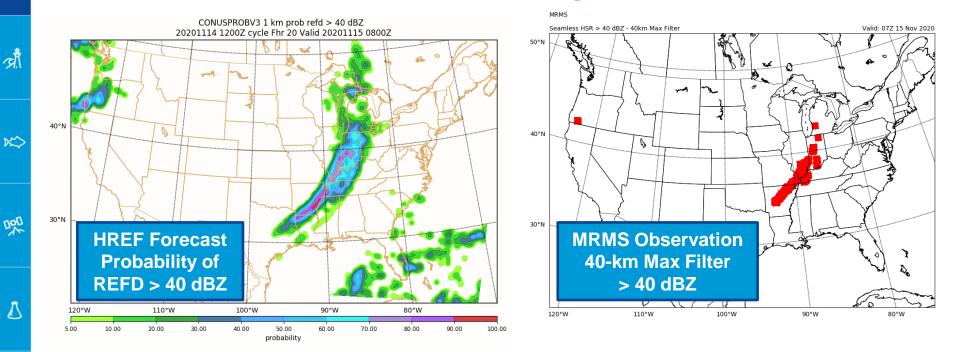



- HREF computes neighborhood maximum probabilities for reflectivity based on maximum value within a ~40 km neighborhood
- Ensuring fair treatment of forecasts by generating obs fields by following the same steps with MET

#### NATIONAL WEATHER SERVICE

ž

512

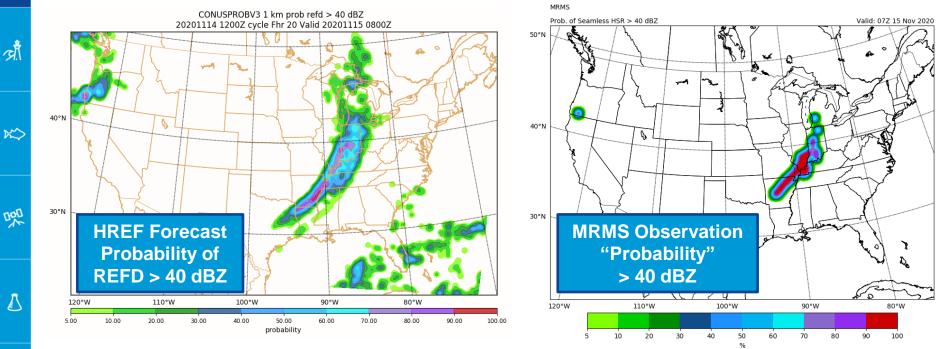



- HREF computes neighborhood maximum probabilities for reflectivity based on maximum value within a ~40 km neighborhood
- Ensuring fair treatment of forecasts by generating obs fields following the same steps with MET

#### NATIONAL WEATHER SERVICE

ž

12

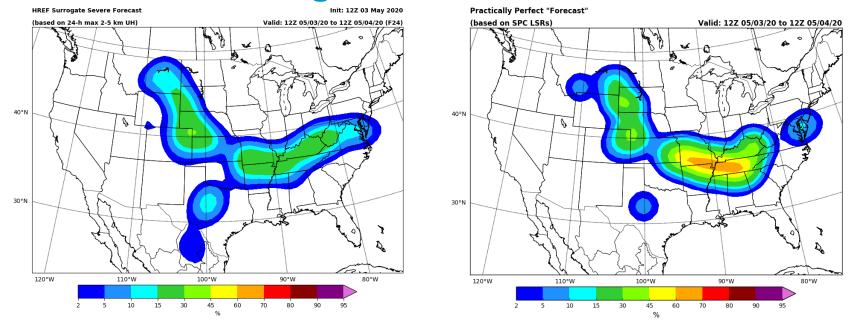



- HREF computes neighborhood maximum probabilities for reflectivity based on maximum value within a ~40 km neighborhood
- Ensuring fair treatment of forecasts by generating obs fields following the same steps with MET

#### NATIONAL WEATHER SERVICE

ž

51 51 53




- HREF computes neighborhood maximum probabilities for reflectivity based on maximum value within a ~40 km neighborhood
- Ensuring fair treatment of forecasts by generating obs fields following the same steps with MET

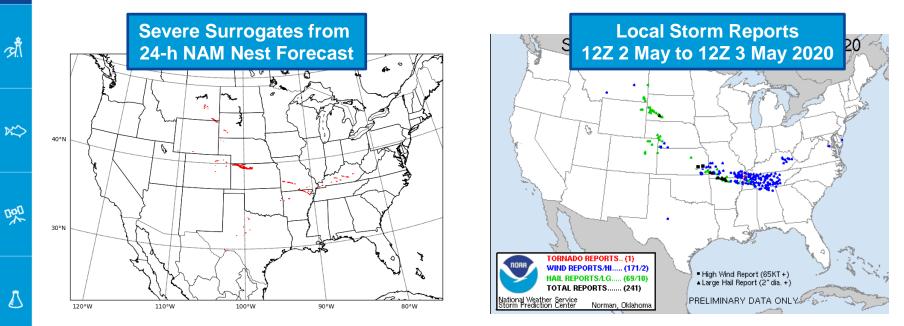
#### NATIONAL WEATHER SERVICE

ž

212



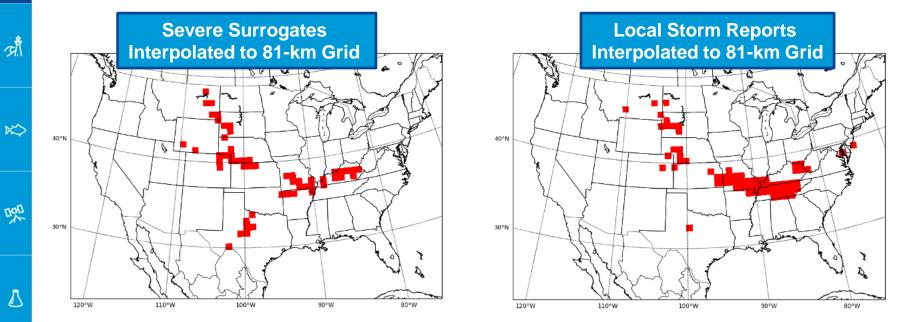
- Uses updraft helicity (UH) exceedances as "surrogates" to generate probabilistic forecasts for severe convection (Sobash et al. 2011, 2016)
- Probabilistic forecasts are verified using practically perfect "forecasts" based on local storm reports (LSRs) (Hitchens et al. 2013)


ž

औ

K

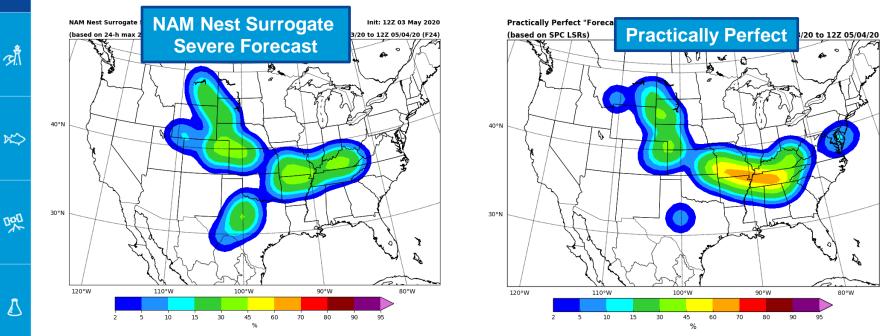
DOL


12



- Surrogates are identified using thresholds based on each model's UH climatology
  - UH is sensitive to model configuration (dynamics, resolution, physics, etc.), so percentile-based thresholds must be used to fairly compare different models

ž


12

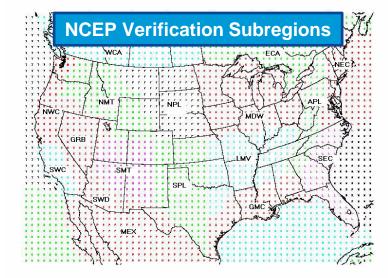


- Forecast surrogates and observed LSRs are interpolated to an 81-km grid using MET
  - By generating on the 81-km grid, the surrogate severe forecast product is on approximately the same scale as convective outlook probabilities (probability of severe weather within 25 mi of a point) issued by the NCEP/SPC
- NATIONAL WEATHER SERVICE

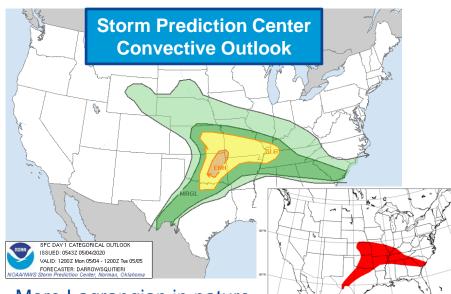
ž

51.50




- Probabilistic fields are generated using the Gaussian smoothing capability available in MET's RegridDataPlane tool
- Probabilistic metrics and contingency table statistics are then computed from resulting fields

#### NATIONAL WEATHER SERVICE


ž

512

#### Using Convective Outlook Areas as Verification Masking Regions



- Eulerian approach to verification
- Can attempt to constrain metrics of interest in time and space, but locations of severe weather threats are not constant in space

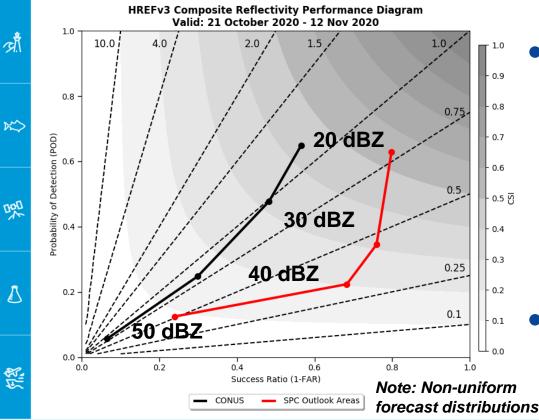


- More Lagrangian in nature
- How well do our forecasts perform in these environments with heightened threats?
- Facilitated by MET's GenVxMask tool, which can read shapefiles defining these areas

#### Building a Weather-Ready Nation // 18

NATIONAL WEATHER SERVICE

ž

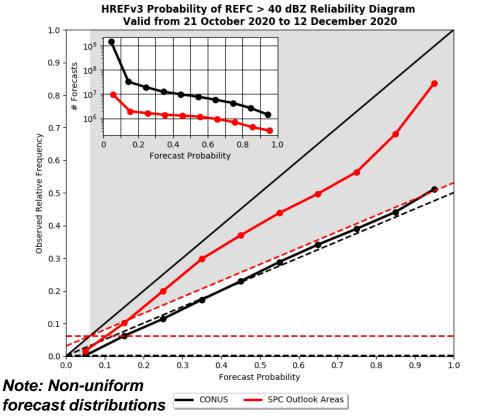

औ

R

四

12

#### Using Convective Outlook Areas as Verification Masking Regions




NATIONAL WEATHER SERVICE

ž

- HREFv3 reflectivity forecasts are generally more skillful in SPC
  Outlook Areas than across the CONUS as a whole
  - Consistent reduction in FAR with limited impact on POD
  - Increased CSI at 3 of 4 thresholds, especially at 40 and 50 dBZ thresholds
- Expected, given that convective outlook areas highlight potential for organized convection, which generally should be more predictable

#### Using Convective Outlook Areas as Verification Masking Regions



NATIONAL WEATHER SERVICE

ž

औ

R

四

51.50

- HREFv3 probabilistic reflectivity forecasts are generally more skillful and reliable in SPC Outlook Areas than across the CONUS as a whole
  - Despite changes in forecast distributions, reliability is improved
  - Increased positive contributions to Brier Skill Score (using sample climatology as reference)
- Expected, given that convective outlook areas highlight potential for organized convection, which generally should be more predictable

# **Future Considerations**

- Metrics and methods applied to NCEP's CAMs will be refined following the 2021 DTC Unified Forecast System Evaluation Metrics Workshop
- Model climatology for updraft helicity is an important factor in the surrogate severe methodology, and we must develop a strategy to account for it in real-time
  - Proper treatment of observation data must be expanded to the verification of other neighborhood-maximum (or neighborhood-minimum) probabilistic forecast products
    - Will be increasingly important with potential product additions for NCEP's next-generation CAM ensemble, the Rapid Refresh Forecast System
  - Use of outlook areas for verification masking could be expanded to other phenomena, such as heavy QPF and fire weather, with existing geospatial forecast products

512

 $\mathbf{\Lambda}$ 

ž

औ

ĸ

明