METplus

Fostering International Collaboration Through a Unified Verification, Validation, and Diagnostics Framework: METplus

Tara Jensen¹, Marion Mittermaier², Jason Levit³, Elizabeth Satterfield⁴, Evan Kuchera⁵, Louisa Nance¹ ¹National Center for Atmospheric Research & Developmental Testbed Center ²The Met Office ³NOAA/Environmental Modeling Center ⁴Naval Research Laboratory ⁵Air Force 557th Weather Wing

2020 IVMW-Online-19 November 2020

Why MET and then METplus?

Forecasters

Operational Centers

Universities and National Laboratories

Comprehensive and unified verification tool - Make R20 more efficient - Provide a consistent set of metrics

Allows researchers and operational scientists to speak a "common verification" language

METplus

User support of unified package provides greater opportunity to train all on verification best practices

What is METplus?

- Over 100 traditional statistics and diagnostic methods for both point and gridded datasets
- 15 interpolation methods
- Applied to many spatial and temporal scales
- Developed to allow for easy sharing of config files for reproducible results
- 3500+ users; US and Int'l
 - 65% International
 - 35% US
 - Primarily Government/Academic, some Private/Commercial

METplus Examples/Use-Case In Development

Goal: A suite of Python wrappers around

- Model Evaluation Tools (MET core)
- Database and display systems (core)
- Plotting
 - METviewer/METexpress User Interfaces
 - METviewer Batch Engine
 - Python plotting scripts
- Communication between MET & python
 algorithms
- Using manage_externals to connect repos

Growing METplus Community

Research Institutions

- NCAR (RAL, MMM, CGD)
- Naval Research Lab
- SBU, U of Illinois Urbana-Champaign, U of Wisc Madison, OU, UND, NC State, Purdue, Albany, etc...
- NOAA Research Labs (GSL, NSSL, PSL, ARL, GFDL)
- NASA Coordinated Community Modeling Center (for Space Wx)
- Army Research Lab

Operational Centers adopted portions or all of METplus

- NOAA EMC, SPC, WPC, OPC, SWPC, NHC, CPC, MDL
- Air Force Operational Center
- Fleet Numerical is considering once Naval Research Lab has transitioned
- The Met Office (agreement executed)
- Other UM partners (i.e. Australian BoM, S. African WS, India's NCMRWF) also considering contributing
- Shanghai Met Bureau
- Argentina's NMS
- Central Weather Bureau (Taiwan) is considering adoption

Python Wrappers for Verification Components

Python wrappers around:

- MET
 - Statistical engine
- METviewer
 - GUI and batch engine
- METexpress
 - Simplified plotting interface
- METdatadb
 - Verification database loader and other utilities
- METcalcpy
 - Aggregation, event equalization, pairwise differencing, confidence intervals
 - Other calculations related to diagnostics

METplotpy

- Plotting for METviewer and maybe portions of METexpress
- Plotting of diagnostic fields
- Python Embedding:
 - Communication between MET & Python algorithms

www.github.com/DTCenter/METplus

METplus Analogy

MET Overview v9.1

MET Tool Categorization

Trad	itional			
Grid-Stat, Point-Stat, Series-Analysis Contingency table statistics (CTS) Continuous statistics Probability forecast statistics Confidence intervals	Ensemble-Stat CRPS, CRPSS Rank prob., Prob. Integral Transform (PIT), and Relative Position histograms Spread/Skill Ignorance Confidence intervals			
Spa	atial			
MODE Location differences Geometric attribute differences Intersection area Intensity distributions & differences CTS measures Wavelet-Stat MSE by scale Energy by scale Intensity-scale skill score	MODE-TD Time and location differences Volume differences Velocity differences Intersection volume Intensity distributions & differences Grid-Stat and Point-Stat FSS, HiRA Distance Measures: MED, Baddeley, Hausdorff, Zhu, etc.			
Tropical Cyclone	s and Diagnostics			
MET-TC Track error (along, cross, total) Intensity errors (pressure, wind) Rapid intensification/weakening errors CTS measures of TC genesis	Grid-Diag Distributions of fields for use in contour plots TC-RMW Radius of maximum wind errors and			
TC-GEN CTS measures of TC genesis	metrics			

METPLUS Operational Categorical Statistics Use Case

Operational Use Case Example

_	28	28	32	NS 30	tats 32	30	30	34
0.30				Pairwise Statistic	e Differe al Signif	ncing aı icance -	nd METvie	wer
0.20 0.20				•			T	
SB) 9. 15 Nill Score	-					•		
und no. 10								1
0.05		_				T	Ţ	T
0.00 -	1							
L	3	6	9	12 Lead T	15 ime (hr)	18	21	24

	Model 1 is better than Model 2 at the 99.9% significance level
	Model 1 is better than Model 2 at the 99% significance level
	Model 1 is better than Model 2 at the 95% significance level
	No statistically significant difference between Model 1 and Model 2
	Model 1 is worse than Model 2 at the 95% significance level
•	Model 1 is worse than Model 2 at the 99% significance level
▼	Model 1 is worse than Model 2 at the 99.9% significance level
	Not statistically relevant
	Statistic for symbols: DIFF_SIG

		Model 1 is better than Model 2 at the 99.9% significance leve
_		Model 1 is better than Model 2 at the 99% significance level
		Model 1 is better than Model 2 at the 95% significance level
		No statistically significant difference between Model 1 and M
_		Model 1 is worse than Model 2 at the 95% significance level
	•	Model 1 is worse than Model 2 at the 99% significance level
_	▼	Model 1 is worse than Model 2 at the 99.9% significance leve
		Not statistically relevant
		Statistic for symbols: DIFF_SIG

Scorecard - METviewer batch engine

			CONUS			EAST				WEST				
			60000	120000	180000	240000	60000	120000	180000	240000	60000	120000	180000	240000
		>=0.254												
	APCP_03	>=2.540												
CEL		>=25.400												
Car		>=0.254												
	APCP_06	>=2.540												
		>=25.400												
		>=0.254									•			
	APCP_03	>=2.540	•				•			*				
PODV		>=25.400												
PODT		>=0.254	•									•		
	APCP_06	>=2.540	•									•		
		>=25.400												
		>=0.254				•								
	APCP_03	>=2.540												
E A D		>=25.400												
FAR		>=0.254				•		•						
	APCP_06	>=2.540												
		>=25.400												
		>=0.254			•	•		•	•				•	
	APCP_03	>=2.540			•	•			•	•			•	
EDIAC		>=25.400												
FDIAS		>=0.254			•	•		•	•				•	•
	APCP_06	>=2.540			•	•			•	•			•	
		>=25 400												

METPLUS TC Use Case

TC Use Case Example

Rapid Intensification (RI) Events

• Original support for tropical cyclone verification then expanded for other applications

Also applicable to other intensity change event

- Renewable Energy Ramps
- Solar Wind during Coronial Mass Ejections
- Extreme Temperature Changes

Categorical statistics for RI or Rapid Weakening events (RW) can be computed

METPLUS MODE Use Case

MODE Use Case Example - Precipitation

New Research – MODE for Sea Ice Fraction

MODE postscript output

New Research – Multivariate MODE

Specific Humidity Gradient

Temperature Gradient

10-m wind direction shift

Contributed by Lindsay Blank

MODE Attributes Summarized

Cloud Fraction from World Wide Merged Cloud Analysis

METPLUS Ensemble Use Case

MET Ensemble and Probability Evaluation

Ensemble Measures (Ensemble-Stat)

- CRPS, CRPSS, RPS, RPSS
- Ignorance Score
- Spread-Skill

RELP

• Rank Histogram, PIT,

Probability Measures (Grid and Point-Stat)

• Brier Score +

Decomposition, Brier Skill Score

- ROC and Area Under ROC
- Reliability

Philosophy: One Tool - Many Applications– GridDiag Tool• Inventories the data

- Develops the PDF (one or twodimensional)
- User configurable bins for PDF and percentiles
- Writes out netCDF files with bins or percentiles for use by other tools (Grid-Stat, Point-Stat, MODE, MTD)

One Tools Many Apps: TC-Genesis

- Collaboration with Dan Halperin, Embry-Riddle Aeronautical University
- Compare forecast of TC-Genesis to actual BEST track and CARQ genesis events
- Writes contingency table counts and statistics; netCDF files of genesis events

Figure: Tropical cyclogenesis verification for the NH for 2016. Symbols represent the Best Track (black), hits (green), late Genesis (blue) and false alarms (red).

Halperin et al., 2017

Providing More Flexibility to Support New Applications

- Python Script Embedding -Script
- User writes a script to read or preprocess data
- The script should define a dictionary named **attr** which defines
- Support for:
 - Python 3.6.3/3.7
 - Numpy, Xarray, Pandas arrays
 - Gridded fields through all tools
 - Point Observations through ASCII2NC and PB2NC tools

Use of Python Embedding - TDR for Evaluating TCs

Image courtesy of Michael S. Fischer, Robert F. Rogers, Paul D. Reasor at NOAA/AOML/HRD Typically, a given mission will have 3–4 passes through the center of the storm. Due to the X-band nature of the TDR, reliable observations only extend outward ~50 km from the aircraft, limiting the azimuthal coverage of observations. An example of the coverage the TDR provides for a single pass is shown

Distance Maps

- Apply threshold of 10-meter VGRD $\geq 5 \text{ m/s}$.
- For each grid point, compute minimum distance to nearest event.
- DMAP statistics are computed by comparing fcst and obs distance maps.

	Table 8.7: Format information for DMAP (Distance Map) output line type.				
DMAP OUTPUT FORMAT					
Column	DMAP Column	Description			
Number	Name				
24	DMAP	Distance Map line type			
25	TOTAL	Total number of matched pairs			
26	FY	Number of forecast events			
27	OY	Number of observation events			
28	FBIAS	Frequency Bias			
29	BADDELEY	Baddeley's Δ Metric			
30	HAUSDORFF	Hausdorff Distance			
31	MED_FO	Mean-error Distance from forecast to observation			
32	MED_OF	Mean-error Distance from observation to forecast			
33	MED_MIN	Minimum of MED_FO and MED_OF			
34	MED_MAX	Maximum of MED_FO and MED_OF			
35	MED_MEAN	Mean of MED_FO and MED_OF			
36	FOM_FO	Pratt's Figure of Merit from forecast to observation			
37	FOM_OF	Pratt's Figure of Merit from observation to forecast			
38	FOM_MIN	Minimum of FOM_FO and FOM_OF			
39	FOM_MAX	Maximum of FOM_FO and FOM_OF			
40	FOM_MEAN	Mean of FOM_FO and FOM_OF			
41	ZHU_FO	Zhu's Measure from forecast to observation			
42	ZHU_OF	Zhu's Measure from observation to forecast			
43	ZHU_MIN	Minimum of ZHU_FO and ZHU_OF			
44	ZHU_MAX	Maximum of ZHU_FO and ZHU_OF			
45	ZHU_MEAN	Mean of ZHU_FO and ZHU_OF			

Collaboration with Eric Gilleland, NCAR/RAL.

Next 2+ Years of METplus Development

NOAA Unified Forecast System

Coupled System Metrics:

- Metrics Workshop
- Sea-ice output evaluation
- PBL diagnostics
- Land-Surface diagnostics
- Hurricane track diagnostics
- Ensemble evaluation

Process-oriented diagnostic:

- Cold surface temperature, SST, and PBL biases
- Gravity wave drag and upward transport of adiabatic heating
- Sources of cloud cover and precipitation biases
- MJO, ENSO and other teleconnections

Additional Projects:

NOAA/OAR: S2S Weeks 2-4 NOAA/OAR ENSO diagnostics NOAA/NWS: S2S Physics diagnostics NOAA/NWS: Marine/Cryosphere coupled metrics

NOAA / NWS: Stratosphere diagnostics NOAA / NWS: S2S Tropical diagnostics NOAA / NESDIS: Space Weather system *Air Force:* Cloud Verification / LSM / New Obs Data Types **NRL:** Cloud Verification / DA diagnostics / **Ensemble** methods **DOE:** LSM diagnostics *Met Office:* Generalization of File Format Support / Optimization / Ensemble methods / SEEPS / Vx on Native Grid **NCAR:** Vx on Native Grid / G_{β} (E. Gilleland's talk 17 Nov 00UTC)

International Collaboration

- Weekly to Monthly meetings between core contributors: NCAR, NOAA, Met Office, NRL – starting discussions on governance next month
- Growing online training video library
- METplus contributors guide
- Open repositories
 - Pull Requests
 - Continuous Integration
 - Cybersecurity Screening
 - Sample Data

METplus:https://github.com/dtcenter/METplusMET:https://github.com/dtcenter/METMETviewer:https://github.com/dtcenter/METviewerMETcalcpy:https://github.com/dtcenter/METcalcpyMETplotpy:https://github.com/dtcenter/METplotpy

			41 T	METplus	Docs » User's Guide
User Support	-		ME		User's Guide
ABOUT - TESTING + EVALUATION - COMMUNITY CODE - VISITOR PROGRAM NEWS	EVENTS	٩	Search docs METPLUS WRAPF User's Guide Contributor's Guid	vers guides	This User's Guide is provided as an aid to users of companion package METplus Wrappers. MET is a supported to community via the Developmental Te weather prediction community. METplus Wrappers and ancillary scripts to enhance the user's ability to
METPLUS			*	MET	希 » User's Guide
View Edit	METPLUS CON	APONENTS V	M		User's Guide
Welcome Welcome to the users page for the enhanced Model Evaluation Tools (METplus) verification system. METplus was developed by the Developmental Testbed Center (DTC) through the generous support of the 557th Weather Wing of the United States Air Force, the National Oceanic and Atmospheric Administration (NOAA), and the National Center for Atmospheric Research (NCAR).	METPLUS Home System Archi Documentati Download	itecture	Model Eva	9.1	Foreword: A note to MET users This User's guide is provided as an aid to users of t verification tools developed by the Developmental weather prediction community to help them assess weather predictions. It is also the core component
METPLUS DOWNLOAD	Torms Of Use	•	ODEL EVALUATI User's Guide Contributor's Guide		METplus details can be found at: http://dtcenter.or It is important to note here that MET is an evolving
View Edit Outline Revisions		METPLUS COM	CONENTS V		1
RECOMMENDED	0.175	METPLUS			
VERSION DOWNLOAD METplus 3.1 METplus-3.1 User's Guide Release Notes Existing Builds and Docker Tutorial (v3.0) Release Notes	DATE 2020-08-11	Home System Archite Documentation	cture	• D	• , , •,• ,
MET-9.1 met-9.1.tar.gz User's Guide Release Notes Release Notes	2020-08-10	Download		• Prej	paring to transition to
METviewer-3.1 METviewer-3.1 User's Guide Release Notes Release Notes	2020-08-10	Terms Of Use	dates	fron	n Help-Desk to Forums
OTHER RELEASES		Input Data			

• <u>https://dtcenter.org/community-code/metplus</u>

Training – Use Cases

TCStat

https://dtcenter.github.io/METplus /Users_Guide/quicksearch.html

Feature:

Docs » User's Guide » 7. METplus Quick Search for Use Cases

7. METplus Quick Search for Use Cases

7.1. Use Cases by MET Tool:

Docs » User's Guide » 5. METplus Use Cases » 5.1. MET tools » 5.1.1.3. ASCII2NC:Basic Use Case	View page source
5.1.1.3. ASCII2NC:Basic Use Case	
met_tool_wrapper/ASCII2NC/ASCII2NC.conf	
Scientific Objective	
None. Simply converting file formats so point observations can be read by th	e MET tools.
Datasets	
Observations: Precipitation accumulation observations in ASCII text files	
Location: All of the input data required for this use case can be found in the tarball. Click here to the METplus releases page and download sample data for release: https://github.com/dtcenter/METplus/releases This tarball should be unpacked into the directory that you will set the value 'Running METplus' section for more information.	met_test sample data or the appropriate of INPUT_BASE. See
Data Source: Unknown	
METplus Components	
This use case utilizes the METplus ASCII2NC wrapper to generate a comman ASCII2NC if all required files are found.	d to run the MET tool
METplus Workflow	
ASCII2NC is the only tool called in this example. It processes the following ru	ın time:

Training - Video

https://dtcenter.github.io/METplus-Training/index.html

Video embedded in page with script

METplus-Training

METplus

Search docs

□ Installation and Setup

Compiling MET

Installing METplus

Manage Externals

Docker Container

Amazon Web Services

Cheyenne Supercomputer

Online Tutorial Topics

METplus Training Topics

MET Training Topics

METviewer Training Topics

Docs » Installation and Setup

Installation and Setup

Each of the training METplus-Training topics consists of a vie by the script for that video, including all commands execute with Follow Along! are structured so that users can follow a environment. For these videos, commands listed in code blo and pasted directly into your training environment!

echo "Welcome to METplus!"

Instructions to compile/install the METplus components fro

- Compiling MET
- Installing METplus
- Manage Externals

Instructions to get up and running with existing builds of the

- Docker Container
- Amazon Web Services
- Cheyenne Supercomputer

G Previous

Docker Container

Docker **Sontainer**

🧑 METPlus Training: Docker Training Enving 🕓

dtcenter.org/community-codes/metplus

I Note

Follow Along! with these exercises using met_tool_wrapper data.

Preparation:

- Pull the metplus-training image (docker pull dtcenter/metplus-training)
- Pull the metplus-data image (docker pull dtcenter/metplus-data:3.1-met_tool_wrapper)

(Introduction)

In this video, we will setup the METplus training environment using Docker containers.

Docker Software

Note

Developed for METplus Version 3.1.

Thank You for Your Attention

- Tara Jensen, NCAR, <u>jensen@ucar.edu</u>
- <u>https://dtcenter.org/community-code/metplus</u>

Much of this presentation taken from: Brown, B., T. Jensen, and Co-authors, 2020: The Model Evaluation Tools (MET): More than a decade of community-supported forecast verification. *Bulletin of the American Meteorological Society*, in press, DOI 10.1175/BAMS-D-19-0093.1

2021 DTC UFS EVALUATION METRICS WORKSHOP

FEB 22 - 24 2021 <u>https://dtcenter.org/events/2021/2021-dtc-ufs-evaluation-metrics-workshop</u>

DTC Visitor Program: https://dtcenter.org/visitor-program

