

"Twin-analysis" verification: a new verification approach that alleviates pitfalls of "own-analysis" verification when applied to short-range forecasts

Daisuke Hotta¹, Takashi Kadowaki², Hitoshi Yonehara², Toshiyuki Ishibashi¹ ¹ MRJ/JMA, ² NPD/JMA

Standard forecast verification practice at operational NWP centers

Verif. against obs.

Pros

 Forecast errors and observations errors can be reasonably assumed independent

Cons

- Limited/sparse spatial coverage
- Intricate data handling

Verif. against "own-analysis"

Pros

- Uniform spatial coverage
- Ease of data handling

Cons

- Forecast errors and analysis errors (with respect to the (unknown) truth) can be positively correlated
- → Can result in overly optimistic scores

Issues with "own-analysis" verification:

- Positive correlation between forecast and analysis errors often makes interpretation difficult (counter-intuitive or even misleading).
- Algebraic explanation

 $RMSE_{vs-anl}^{2} = \mathbb{E}[(f-a)^{2}] = \mathbb{E}[(f-t)^{2}] + \mathbb{E}[(a-t)^{2}] - 2Cov(f-t,a-t)$ $= RMSE_{true}^{2} + (Anl RMSE)^{2} - 2^{*}(Error corr)^{*} (Fcst RMSE)^{*}(Anl RMSE)$

where f: forecast, a: analysis, t: truth, \mathbb{E} : expectation over many cases

- Implication:
 - RMSE scores can be lowered if error correlation increases
 - even when true fcst error is unchanged (or even degraded).

Issues with "own-analysis" verification: Examples

- Feeding new observations to data-sparse regions induces apparent "forecast degradation" despite improvement in O-B fits (e.g., Bouttier and Kelly, 2001).
- Re-using information from the first guess (such as in retrieval assimilation) can apparently "improve" scores (which is overly optimistic) (e.g., Geer et al. 2010 Part II).
 - Extreme example: Forecast-forecast cycle (i.e., assimilating no observations at all) gives perfect score (i.e., RMSE=0)
- → Extra-caution is necessary when interpreting "own-analysis" verification, particularly for short-range forecasts.

Sources of positive correlation between forecast and analysis errors

- (1) forecast and analysis sharing the same "ancestry"
 - The impact stronger for shorter lead times
 - stronger also when the observational information is less incorporated in the analysis, e.g.,
 - when observation error variance (R) is large
 - or when fewer observations are assimilated
- (2) forecast and analysis sharing the same bias
 due to the use of the same forecast model
- The bias issue (2) is very difficult to tackle.
- In this study we focus on (1) and try to isolate the random component of the correlation term 2Cov(*f*-*t*,*a*-*t*)

Proposal for a new verification method: "Twin-analysis verification"

- $\operatorname{RMSE}_{vs-anl}^2 = \mathbb{E}[(f-a)^2] = \mathbb{E}[(f-t)^2] + \mathbb{E}[(a-t)^2] 2\operatorname{Cov}(f-t,a-t)$
- We wish to isolate the contamination from the term 2Cov(f-t,a-t)
- How? → Verify against an independent realization a' of analysis that follow the same probability distribution as that of the own analysis a
- How to generate the independent analysis a'?
- → Employ "twin" cycle (Inspired by the approach of Kotsuki et al. (2019) for ensemble FSOI)
 - Use the same assimilation system assimilating the same set of observation
 - But initialize the cycle at a sufficiently earlier time from an independent first guess
 - which is generated by switching on stochastic physics

Graphically explained ir the next slide

Experimental set-up

cycle A are verified against

either cycle-A analyses or

cycle-B analyses.

- Using the operational 4DVar,
- Initialize Cycles A and B from two independent analyses that can be considered drawn from the same distribution
- using the same model and observations
- so that their bias tendency should be equivalent.
- Compare the scores of
 - Cycle A fcst verified against Cycle A analysis (CNTL), and
 - Cycle A fcst verified against Cycle B analysis (TEST)
- Discrepancy between TEST and CNTL is an indication of contamination from the correlation term - 2Cov(*f-t,a-t*)

on.

Score-Differences Confidence [G05P4MF1x2018sum] scores compared to [DUMMY] period: 201807 / Daily Snapshot Scores from D+1 to D+11										
		NH(N90°-N20°)	TR(20°N-20°S)	SH(20°S-90°S)	JP(110-150,20-50)	NWP(100-180,0-60)				
Z500	RMSE			●▲▲▲ ● ▼▲▲♦♦		▼▲▲▲				
	ACC	▼ • • • ▲ ♦▲ • • • •		• A • A V A • V • •	◆ ▲ ▲ ▲ ◆ ▲ ▲ ▲ ▲					
	ME		*****		$\blacktriangle \lor \lor$					
PSEA	RMSE				V A V V V • • • • V					
	ACC		X • • • X X X X X		♦ • ▲ ▼ • • • • • ▲ •					
	ME									
T850	RMSE	▼▲▲○▲○♦♦	• • • • • • • • • •	▼▲▲○▼▼∳▼▼		▼▼▼◇▼◇▲◇♦♦				
	ACC		V • • V • • • 							
	ME	♦ ♦₹ ~ ▲ ▲ ♦♦♦	********	****	A V V V V V V V V V					
Ws250	RMSE	 ▲▲ • ▲ ♦ ▲ ♦ ▲			• • • • • • •					
	ACC	• • • 🗸 • • 🔺 • • •		● ▼ • ▼ ▼ ▼ • ▲ ▲ ▼						
	ME			****	*****	* * * * * * * * * * * *				
Ws850	RMSE	▼▼▲▲○◆▼▼▼▼	••••	• • • • • • • •						
	ACC		V · · · V V V · V							
	ME	*******		***	********	********				
RH700	RMSE	• • • • • • • • •								
	ACC					V A • • V • • • •				
	ME				*****	******				
<mark> </mark> better (>99%) ♦ better (>95%) ▲ better (>68%) neutral ▼ worse (>68%) ♦ worse (>95%) worse (>99%)										

Comparison of "ownanalysis" (CNTL) and "twin-analysis" (TEST) verification scores computed for the same forecast.

- For any elements and any areas, both RMSE and ACC scores exhibit statistically significant "degradations" for short lead times (up to ~ 2 days)
 - which highlights the over-optimism of "own-analysis" verification
- RMSE and ACC scores are quite consistent
- The "longevity" of score differences varies depending on the verified elements and regions
 - Z500 and Ws250 (wind speed at 250hPa): up to only ~ 1 day
 - T850 and RH700: persists up to ~3 days and beyond

Score-Differences Confidence [G05P4MF1x2018sum] scores compared to [DUMMY] period: 201807 / Daily Snapshot Scores from D+1 to D+11										
		NH(N90°-N20°)	TR(20°N-20°S)	SH(20°S-90°S)	JP(110-150,20-50)	NWP(100-180,0-60)				
Z500	RMSE			• • • • • • • • • • •		▼▲▲▲■◆▲▼▼▼∘				
	ACC	▼ • • • ▲ ♦ ▲ • • • ▼			◆ ▲ ▲ ▲ ● ▲ ▲ ▲ ▲ ▲					
	ME		***		$\blacktriangle \lor \lor$					
PSEA	RMSE									
	ACC				♦ • ▲ ▼ • • • • • ▲ •					
	ME									
Т850	RMSE		• • • • • • • • • •	▼▲▲○▼▼♠▼▼						
	ACC		V • • V • • • A A							
	ME	♦♦▼ ○ ▲ ▲ ♦♦♦♦	*********		▲ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼					
Ws250	RMSE									
	ACC	• • • 🗸 • • 🔺 • • •								
	ME			*****	*****	* * * * * * * * * * * *				
Ws850	RMSE	▼▲▲○◆▼▼▼▼	.	• • • • • • • •						
	ACC		V · · · V V V · V							
	ME	********		***	****	****				
RH700	RMSE	• • • • • • • • • •								
	ACC					V A • • V • • • •				
	ME				*****	* * * * * * * * * * * *				
<mark> </mark> better (>99%) ♦ better (>95%) ▲ better (>68%) neutral ▼ worse (>68%) ♦ worse (>95%) worse (>99%)										

Comparison of "ownanalysis" (CNTL) and "twin-analysis" (TEST) verification scores computed for the same forecast.

- For any elements and any areas, both RMSE and ACC scores exhibit statistically significant "degradations" for short lead times (up to ~ 2 days)
 - which highlights the over-optimism of "own-analysis" verification
- RMSE and ACC scores are quite consistent
- The "longevity" of score differences varies depending on the verified elements and regions
 - Z500 and Ws250 (wind speed at 250hPa): up to only ~ 1 day
 - T850 and RH700: persists up to ~3 days and beyond

Comparison of "ownanalysis" (CNTL) and "twin-analysis" (TEST) verification scores computed for the same forecast.

- For any elements and any areas, both RMSE and ACC scores exhibit statistically significant "degradations" for short lead times (up to ~ 2 days)
 - which highlights the over-optimism of "own-analysis" verification
- RMSE and ACC scores are quite consistent
- The "longevity" of score differences varies depending on the verified elements and regions
 - Z500 and Ws250 (wind speed at 250hPa): up to only ~ 1 day
 - T850 and RH700: persists up to ~ 3 days and beyond

Comparison of "ownanalysis" (CNTL) and "twin-analysis" (TEST) verification scores computed for the same forecast.

- For any elements and any areas, both RMSE and ACC scores exhibit statistically significant "degradations" for short lead times (up to ~ 2 days)
 - which highlights the over-optimism of "own-analysis" verification
- RMSE and ACC scores are quite consistent
- The "longevity" of score differences varies depending on the verified elements and regions
 - Z500 and Ws250 (wind speed at 250hPa): up to only ~ 1 day
 - T850 and RH700: persists up to ~ 3 days and beyond

Results: Vertical profiles of RMSE score differences NH extra-tropics (similar in SH extra-tropics)

Score differences at T+0 is the RMS diff. between the "twin" analyses → Can be interpreted as an indication of to what extent observations can constrain the analysis uncertainty

Large discrepancies found in

- Temperature at lower troposphere and upper stratosphere
- Winds at mid-to-high troposphere and upper stratosphere
- Height field at upper stratosphere

Coincides with regions where obs. are scarce

Results: Vertical profiles of RMSE score differences Tropics

Similar to the NH and SH extra-tropics, but the differences persist to longer lead times in the upper stratosphere (again data-sparse region)

Summary

- The "own-analysis" verification scores can be unreliably optimistic at short rages
 - due to the error correlation between forecast and analysis
- "Twin-analysis" verification is proposed and conducted to quantify to what extent "ownanalysis" scores are contaminated by the error correlation.
- Results suggest that:
 - Spurious optimism persists at least 1 day
 - can persist up to 3+ days for some elements and regions
- The spurious effect (= uncertainty of "own-analysis" scores) persists longer for relatively unobserved regions and elements

Implications

 The difference between "twin-" and "own-" analysis scores can be interpreted as the uncertainty of "own-analysis" scores

→ perhaps can be used to estimate the reliability of the scores (like a confidence interval)

- From our experiments, the difference between the scores was quite large
 - for Z500 T+24 score, the difference was comparable to using or not using an AMSU-A instrument
- Practical recommendation (maybe controversial):
 - Ignore degradations in short-range own-analysis scores (up to ~ 1day)

References

- Bouttier, F and G. Kelly (2001) Observing-system experiments in the ECMWF 4D-Var data assimilation system. *Q. J. R. Meteorol. Soc.*, **127**, 1469–1488.
- Geer, A.J., P. Bauer and P. Lopez (2010) Direct 4D-Var assimilation of all-sky radiances. Part II: Assessment. *Q. J. R. Meteorol. Soc.*, **136**, 1886–1905.
- Kotsuki, S., K. Kurosawa and T. Miyoshi (2019) On the properties of ensemble forecast sensitivity to observations. . *Q. J. R. Meteorol. Soc.*, **145**, 1897–1914. doi: 10.1002/qj.3534

BACKUP

Carlos Martin Processi

RMSE score normalized difference

Anomaly correlation score normalized difference

