

U.S. AIR FORCE

Data Assimilation Techniques in Verification

Tom Auligné, Director, Joint Center for Satellite Data Assimilation

With inputs from members of WMO DAOS Working Group, JCSDA, ECMWF, and more

WWRP/WGNE JWGFVR:: Nov 9, 2020:: Virtual Exchange

Use of Reanalysis to Evaluate Forecast

NWP forecast skill varies due to

- model and DA upgrades
- changes in the observing system
- atmospheric predictability

Comparing with re-forecasts skill can isolate the effect of model/DA upgrades

Reanalysis system must be "similar" to the NWP system

Data Assimilation Basics

Background and observations are combined to give the analysis:

Data assimilation is a cycled process:

Analysis increment: x^a - x^b

Obs-model departures: $[\mathcal{H}_k(\mathbf{x}_k) - \mathbf{y}_k]$

Credit: Ménétrier

Outline

- Forward Operator
- Observation Processing
- Error and Bias Characterization
- Forecast Sensitivity Observation impact
- Community Infrastructure

FORWARD OPERATOR

Big Data is here!

FOR SATELLITE DATA

Forward Operator

- Horizontal, vertical, and time interpolation from model to observations
- Variable transform and integration along observation geometry
- Fast Radiative Transfer Model

Community Radiative Transfer Model (CRTM)

Emulation of the Community Hydrometeor Model (CHyM) providing consistency between model microphysics and assumed CRTM cloud microphysics.

Sieron, S.B., Clothiaux, E.E., Zhang, F., Lu, Y. and Otkin, J.A., 2017. Comparison of using distribution-specific versus effective radius methods for hydrometeor single-scattering properties for all-sky microwave satellite radiance simulations with different microphysics parameterization schemes. *Journal of Geophysical Research: Atmospheres*, *122*(13), pp.7027-7046.

Multi-Domain Forward Operator

SMAP Observations, Simulated, and Departures

OR SATELLITE DATA

With CRTM default salinity

With MOM6 salinity background

Temperature Bias in ECMWF model

Source: Laloyaux et al. (2019)

OBSERVATION PROCESSING

Observation Processing

- Channel selection, blacklisting
- Thinning or super-obbing
- Forward operator
- Observation bias correction
- Quality control
 - Cloud detection, Variational QC
- Observation error assignment

$$\mathbf{J}_{o} = \frac{1}{2} \sum_{k=0}^{N} \left(\mathcal{H}_{k} \mathcal{M}_{k,0}(\mathbf{x}_{0}) - \mathbf{y}_{k} \right)^{\mathrm{T}} \mathbf{R}_{k}^{-1} \left(\mathcal{H}_{k} \mathcal{M}_{k,0}(\mathbf{x}_{0}) - \mathbf{y}_{k} \right)$$

Screening

Complex Quality Control Procedures

ATELLITE DAY

NOAA Operational QC Flowchart for Infrared Sounders

ERROR AND BIAS CHARACTERIZATION

Ensemble Data Assimilation

Cycling x^b and x^a is easy ... but **B** and **A** are way too big! ! solution: ensemble data assimilation Ensemble backgrounds are updated into ensemble analyses:

Error Covariances Diagnostics

 $E[\mathbf{d}_{b}^{a}(\mathbf{d}_{b}^{o})^{\mathrm{T}}] = \mathbf{H}\mathbf{B}\mathbf{H}^{\mathrm{T}},$ $E[\mathbf{d}_{b}^{o}(\mathbf{d}_{b}^{o})^{\mathrm{T}}] = \mathbf{H}\mathbf{B}\mathbf{H}^{\mathrm{T}} + \mathbf{R},$

$$E[\mathbf{d}_{a}^{o}(\mathbf{d}_{b}^{o})^{T}] = \mathbf{R},$$

$$E[\mathbf{d}_{b}^{a}(\mathbf{d}_{a}^{o})^{T}] = \mathbf{H}\mathbf{A}\mathbf{H}^{T}$$

Desroziers et al., 2005

Correlated errors (esp. for moisture channels)

At least partly due to representativeness error (Waller et al. 2014)

Source: Weston (2011)

Control System Theory

FOR SATELLITE DATA

Control System Theory

Example 1: Observation bias

Example 2: Systematic model error

COR SATELLITE DATA

Satellite Radiance Bias Correction

i=0

drift (Grody et al. 2004)

Source: Dick Dee (ECMWF)

SATELLITE DAT

Model Error in Weak Constraint 4DVar

Weak-constraint

- First-guess trajectory
- Observations
- Compute a correction at initial time
- Compute a model forcing η
- Analysis trajectory

$$\mathbf{x}_k = \mathcal{M}_{k,k-1}(\mathbf{x}_{k-1}) + \eta$$

Data assimilation cost function depends on initial conditions and model forcing

SATELLITE DAT

FORECAST SENSITIVITY OBSERVATION IMPACT

Where does GNSS-RO Influence the Forecast

Vertically-integrated moist energy norm of the difference between analysis increments with and without radio occultation. Each blob corresponds to a GNSS-RO observation.

Source: Chris Burrows (2016)

Where does GNSS-RO Influence the Forecast

Vertically-integrated moist energy norm of the difference between analysis increments with and without radio occultation. Each blob corresponds to a GNSS-RO observation.

Source: Chris Burrows (2016)

Observation Impact Estimation

Fcst Error

The difference $\delta e = e(\mathbf{x}_a^f) - e(\mathbf{x}_b^f)$ measures the collective impact at 24 h of **all observations** assimilated at 0 h. (model space)

From Langland and Baker (2004)

Observation Impact Estimation

3-Month Average (MJJ 2015) for 24h Forecasts Initialized at 00z

Credit: NASA/GMAO

ATELLITE DAT

Observation Impact Estimation

Mar 10 - May 10, 2019

Mar 10 - May 10, 2020

SATELLITE DATA

JCSDA processing and distributing near-real-time data from NASA, NRL and Met Office on https://ios.jcsda.org

COMMUNITY INFRASTRUCTURE

Unified Forward Operator (UFO)

Model-agnostic operators and abstract filters that can be shared and compared

SATELLITE DATA

Joint Effort for Data assimilation Integration (JEDI)

JEDI: One system with multiple configurations for Earth system data assimilation

Abstract interfaces and separation of concerns The end of the monolithic gigantic jumble of code

Typical Observation Workflow

This is not sustainable:

- maintenance and evolution are impossible
- does not fit possible evolution of DA methods (continuous assimilation)

Research Repository for Data & Diagnostics

IODA: One observation data handling interface across the whole NWP chain

R2D2: cloud-based repository to host a comprehensive collection of Earth observations and model output, along with tools and workflows needed for DA development, model forecast verification and process-level model diagnostics

Near Real-Time Monitoring Applications

soca.jcsda.org

nrt.jcsda.org

AMSUA MetOp-C

2020-05-15 21:00:00 ±10min

2020-05-15 22:15:00 ±5min

AMSUA NOAA15 AMSUA NOAA18

2020-05-15 21:00:00 ±5min

2020-05-15 21:10:00 +10min

HIRS4 NOAA19

Satwind

SEVIRI M08

2020-05-15 21:00:00 ±10min

AMSUA MetOp-B

HIRS4 MetOp-A

MHS NOAA19

Website is served by community code on GitHub.

2020-05-15 21:00:00 ±10min

2020-05-15 21:00:00 ±10min

AMSUA Aqua

AMSUA MetOp-A

2020-05-15 21:00:00 ±10min

2020-05-15 21:00:00 ±10min

2020-05-15 21:00:00 ±10min

2020-05-15 21:00:00 ±10min

Final Remarks and Integration Perspectives

Byproducts of Data Assimilation useful for verification:

- Obs-model departures (4D) for many observing system
- J_o = Metric of fit to observations
- Analysis increments and spatial displacement increments
- Some ability to disentangle obs vs. model bias

Verification practices ingestible into Data Assimilation:

- Metrics for Observation Impact Estimation
- Parametric representation of systematic errors
- Obs-space diagnostics in community repository

U.S. AIR FORCE

Discussion

Displacement Analysis

Nehrkorn, Woods, Auligné and Hoffman (MWR 2014a)

50

20

60

70

80

Metric for spatial verification

OR SATELLITE DATA